Robot localization in a mapped environment using Adaptive Monte Carlo algorithm

Author
Sagarnil Das
View Count
2325
License
Creative Commons CC BY 4.0
Abstract

Localization is the challenge of determining the robot's pose in a mapped environment. This is done by implementing a probabilistic algorithm to filter noisy sensor measurements and track the robot's position and orientation. This paper focuses on localizing a robot in a known mapped environment using Adaptive Monte Carlo Localization or Particle Filters method and send it to a goal state. ROS, Gazebo and RViz were used as the tools of the trade to simulate the environment and programming two robots for performing localization.

Robot localization in a mapped environment using Adaptive Monte Carlo algorithm