
Mathematical Rings
Author:
YOGESH MALIK
Last Updated:
há 6 anos
License:
Creative Commons CC BY 4.0
Abstract:
Mathematical Rings

\begin
Discover why over 20 million people worldwide trust Overleaf with their work.
Mathematical Rings

\begin
Discover why over 20 million people worldwide trust Overleaf with their work.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Consultar o ficheiro README
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[pdflatex,compress]{beamer}
\usetheme[dark,framenumber,totalframenumber]{UBI}
% Fonts, the official UBI font. O tipo de letra é o Georgia da Microsoft Office. O tipo de letra é o definido no GUIA DE NORMAS DE IDENTIDADE da UBI
\usepackage{fontspec,microtype}
\usepackage{unicode-math}
\defaultfontfeatures{Ligatures={TeX},Renderer=Basic}
\setmainfont[Ligatures={TeX,Historic}]{Georgia}
\setsansfont{Georgia} 
\setmonofont{Georgia}
%%%%%%%%%%%%%%%%%%
%\usepackage{lipsum}
\title{RING}
\subtitle{\Large{Delhi Technological University \\ DELHI}}
\author{Submitted By : YOGESH MALIK }
\begin{document}
% ----------------------------------------------------------------------------
% *** Titlepage <<<
% ----------------------------------------------------------------------------
\maketitle
% ----------------------------------------------------------------------------
% *** END of Titlepage >>>
% ----------------------------------------------------------------------------
\section{My section}
\subsection{My subsection}
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\frametitle{RING}
\textcolor{blue}{
\textcolor{black}{ $\bullet$ $DEFINITION:-$}
                     \\ A non-empty set R , equipped with two binary operations called addition and multiplication denoted by (+) and (.) is said to form a ring if the following properties are satisfied :\textcolor{black}{\\Properties under Addition :} \\ $1$.   $R$ is closed with respect to addition \\i.e.,       $a,$ $b$ $\in$ $R$, then $a + b$ $\in$ $R$\\ $2$.   Addition is associative \\i.e.,       $a + (b + c) = (a + b) + c$ $\forall$ $a, b, c$ $\in$ $R$\\ $3$.   Addition is commutative \\i.e.,  $a + b=b + a$ $\forall$ $a$, $b$ $\in$ $R$}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
 \begin{frame}
 
 
 \vspace{2cm}
 \textcolor{blue}{$4$.   Existence of additive identity\\i.e.,   there exist an additive identity in R denoted by in R such that \\$0+a=a=a+0$ $\forall$ $a$ $\in$ $R$\\$5$.	Existence of additive inverse
\\i.e., to each element $a$ in $R$, there exists an element $–a$ in $R$ such that \\  $-a + a = 0 = a + (-a)$\textcolor{black}{\\Properties under Multiplication :} \\ $6$.   $R$ is closed with respect to multiplication \\ i.e.,   if   $a, b \in$ $R$, then $a .b$ $\in$ $R$ \\   $7$.   Multiplication is associative \\ i.e., $a. (b .c) = (a. b).c$ $\forall$ $a, b, c$ $\in$ $R$\\    $8$. Multiplication is distributive with respect to addition \\ i.e.,    $\forall$ $a, b, c$ $\in$ $R$ , $a. (b + c) = a. b + a .c$  [Left distributive law]   \\ And  $(b + c) . a = b. a + c. a $[Right distributive law]}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\frametitle{}
\textcolor{blue}{$\bullet$ REMARK:
\hspace{4cm}\\Any algebraic structure ($R$, $+$, $.$) is called a ring if ($R$, $+$) is an abelian group and $R$ is closed , associative  with respect to multiplication and multiplication is  distributive with respect to addition.}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}{$\circledast$ TYPES OF RING }
\textcolor{black}{$1$.	COMMUTATIVE RING :}\textcolor{blue}{ \\A ring in which $a. b = b .a$ $\forall$ $a, b$ $\in$ $R$ is called commutative ring.}\textcolor{black}{\\ 2.	RING WITH UNITY :}\textcolor{blue}{\\If in a ring, there exist an element denoted by $1$ such that $1.a=a=a.1$ $\forall$ $a$ $\in$ $R$ is called a ring with unity element.\\ The element $1$ $\in$ $R$ is called the unit element of the ring. \\   Thus, if $R$ satisfies the all eight properties of ring and also have multiplicative identity, then we define $R$ as ring with identity. }
\textcolor{black}{\\$3$.	NULL RING OR ZERO RING :} \textcolor{blue}{\\The set $R$ consisting of a single element $0$ with two binary operations defined by $0+0=0$ is a ring and is called null ring or zero ring.}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\textcolor{red}{ \vspace{2cm}\\ Eg. Prove that the set $Z$ of all integers is a ring with respect to addition and multiplication of integers.}
\textcolor{black}{\\Proof:  
\\ $\centerdot$          Properties under Addition :}
\textcolor{blue}{\\$1$.	Closure property: As sum of two integers is also an integer ,\\ ∴ $Z$ is closed with respect  to addition of integers . 
\\$2$.	Associativity: As addition of integers is also an associative composition 
\\ $\therefore$ ,                  $a + (b + c) =(a + b)  +c$   $\forall$ $a , b , c$ $\in$ $Z$
\\$3$.	Existence of additive identity: For $0$ $\in$ $Z$, $0 + a = a = a +0$ $\forall$ a $\in$ $Z$.
\\$\therefore$, $0$ is additive identity.
\\$4$.	Existence of additive inverse: For each $a$ $\in$ $Z$ there exist $–a$ $\in$ $Z$ such that                       $a + (-a) = 0 = (-a) + a$     ,
\\where  $0$ is identity element .}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\vspace{1cm}\textcolor{blue}{$5$.	Commutative property :       
                                \\ $a + b = b+ a$ $\forall$ $a , b$ $\in$ $Z$\\ } \textcolor{black}{ $\centerdot$Properties under Multiplication:}\textcolor{blue}{\\6.	Closure property with respect to multiplication: As product of two integers is also an integer\\$a . b$ $\in$  $Z$ $\forall$  $a, b$ $\in$  $Z$\\7.	Multiplication is associative :\\ $a . (b .c) = (a .b) .c$ $\forall$ $a, b, c$ $\in$ $Z$ \\  8.   Multiplication is distributive with respect to addition:\\$\forall$ $a, b, c$ $\in$ $Z$,   $a. (b + c) = a .b + a .c$ \\And $(b + c) .a = b .a + c .a$\\Hence,$Z$ is a ring with respect to addition and multiplication of integers.}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\textcolor{black}{$\blacktriangleright$ Note:}\textcolor{blue}{\\
 1.    As $1 .a = a .1  = a$ , $\forall$  $a$ $\in$ $Z$ ,\\ $\therefore$  $1$ is a multiplicative identity of  $Z$.
 \\2.    As $a .b = b .a$, $\forall$ $a , b$ $\in$ $Z$,  
 \\ $\therefore$  multiplication of integers is  commutative . 
      \\   Hence, $Z$ is a commutative ring with unity.}\textcolor{black}{
      \\$\circledast$ $Remark:$}\textcolor{blue}{
             \\     A ring $R$ is said to be Boolean ring if $x^2 = x$ $\forall$ $x \in R$.}
    
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\textcolor{black}{\\ Eg. Prove that a ring $R$ in which $x^2 = x$ $\forall$ $x \in R$ ,  must  be  commutative.
                    \\                                        OR 
    \\  Show that a Boolean ring is commutative.
}\textcolor{blue}{\\
Proof: 
   \\         Let $x, y \in R$  $\Rightarrow$
   $x + y \in R$
     \\       By give condition,     $(x + y) ^2 = x + y$ $\forall$ $x, y \in R$ 
  \\ $\Rightarrow$                    $(x + y)(x + y) = x + y $
  \\ $\Rightarrow$            $x. x + x. y + y. x + y. y = x + y$
    \\                          $x^2 + x. y + y. x + y^2 = x + y$
  \\$\Rightarrow$           $x + x. y + y. x + y = x + y$                       [$\therefore$ $x^2 = x$ , $y^2 = y$ ]
  \\ $\Rightarrow$                       $x. y + y. x = 0$
  \\$\Rightarrow$                             $x. y =  -(y .x)$ 
 \\                           $x.y    = ( -y .x)^2$  ………(1)}
 \end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
 \begin{frame}\vspace{1cm}
 \textcolor{blue}{
Again $\forall$ $y \in R$ ,           $(y + y) ^2 = y + y$
\\$\Rightarrow$                            $(y + y)(y + y) = y + y$
\\$\Rightarrow$                     $y. y + y .y  + y .y + y .y = y + y$
 \\                          $y^2 + y^2 + y^2 + y^2 = y + y$
\\$\Rightarrow$                  $y + y + y + y = y + y$
\\$\Rightarrow$                              $y + y = 0$
\\$\Rightarrow$                            $y = -y$ \\
$\therefore$   from (1),             $x. y = (yx)^2$
\\                            $x.y = yx$
\\Thus                                     $x .y = y .x$
$\forall$  $x, y \in R$
\\Hence,$R$ must be commutative. }
    
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}{$\circledast$ RINGS WITH OR WITHOUT ZERO DIVISORS:}
                  \textcolor{blue}{\\A ring $(R, + , .)$ is said to be $without$ $zero$ $divisors$ if for all $a$, $b$ belong to R  $a. b = 0$  that implies  either $a = 0$ or $b = 0$ \\On the other hand, if in a ring $R$ there exists non zero elements $a$ and $b$ such that $a. b =0$, then $R$ is said to be a $ring$ $with$ $zero$ $divisors.$ \\Eg. \\1.	Sets $Z$, $R$, $C$, and $Q$ are without zero divisors rings.\\2.	The ring (${0, 1, 2, 3, 4, 5}$, $+$6, $×$6) is a ring with zero divisors.}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}\vspace{2cm}
\textcolor{red}
{
Eg. Prove that the set $\{0,1,2,3,4,5 \}$ with addition  modulo $6$ and multiplication modulo $6$ as composition is a ring with zero divisors.}
\textcolor{blue}{
Proof :
          \\ Let $R$ =$\{0,1,2,3,4,5\}$}
        \textcolor{black}{  \\Properties under addition :}
        \textcolor{blue}{
\\1.	 Closure  law :
\\As all the entries in the addition composition table are elements of set $R$ is closed w.r.t. addition modulo 6.
\\2.	Associative law : \\The composition  $+6$ is associative. If $a,b,c$ are any three elements of $R$ then  
    \\  $a$ +6 $(b$ +6 $c)$= $a$ +6 $(b + c)$
     \\ $a$ +6 ($b$ +6 $c$)= least non-negative remainder when $a+(b+c)$ is divided by $6$}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\textcolor{blue}{
\\$a +6 (b+6 c)$=least non-negative remainder when $(a+b)+c$ is divided by $6$
\\$a$ +6 ($b$ +6 $c$)=$(a+b)$ +6 $c$
\\$a$ +6 ($b$ +6 $c$)=($a$ +6 $b$) +6 $c$
\\3.	Existence of identity : 
\\As $0$ +6 $a$ = $a$=$a$ +6 $0$ $\forall$ $a$ $\in$ $R$
\\4.	Existence of inverse : 
\\From the table , we see that the inverse of  $\{0,1,2,3,4,5\}$ are $\{0,5,4,3,2,1\}$ respectively. Hence , additive inverse exists. 
\\5.	Commutative law : 
  \\       For all $a,b$ $\in$ $R$ , we have $a$ +6  $b$=$b$+6 $a$}
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\textcolor{black}{
\\Properties under multiplication :}
\textcolor{blue}{
\\6.	Closure law for multiplication : \\All the entries in the multiplication composition table are element of set $R$ , therefore $R$ is closed with respect to multiplication modulo 6.}
\textcolor{blue}{\\7.	Associative law for multiplication : \\Let $a, b , c$ $\in$ $R$
\\ $\therefore$          $a$ ×6 ($b$ ×6 $c$) = $a$ ×6 $(b c)$
        \\                $a$ ×6 $(b$ ×6 $c)$ = least non – negative remainder when $a(b c)$ is divided by 6.
          \\             $a$ ×6 $(b$ ×6 $c)4$ = least non negative remainder when $(ab)c$ is divided by 6
            \\           $a$ ×6 $(b$ ×6 $c)$ = $ab$ ×6 $c$ 
              \\         $a$ ×6 $(b$ ×6 $c)$ = $(a$ ×6 $b)$ ×6 $c$}
\end{frame}	
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
% ----------------------------------------------------------------------------
% *** Test frame <<<
% ----------------------------------------------------------------------------
\begin{frame}
\vspace{1.75cm}
\textcolor{blue}{
8.	Distribution laws : \\If $a,b,c$ be any three elements of $R$ , then 
          \\$a$ ×6 $(b$ +6 $c)$ =  $a$ ×6 $(b$ + $c$) 
         \\$a$ ×6 $(b$ +6  $c)$= least non negative remainder when $a(b+c)$ is divided by 6
      \\$a$ ×6 $(b$ +6  $c)$ = least non – negative remainder when $ab+ac$ is divided by 6
        \\$a$ ×6 $(b$ +6  $c)$ = $ab$ +6  $ac)$
       \\$a$ ×6 $(b$ +6  $c)$  = $a$ ×6 $(b$ +6  $c)$}
       \textcolor{blue}{
\\similarly ,  ($b$ +6  $c)$ ×6 $a$ = $(b$ ×6 $a)$ +6  $(c$ ×6 $a)$
\\Hence , $R$ is a ring with respect to given compositions.}
\end{frame}
\begin{frame}
 \textcolor{blue}{\\As $(R$, $+$6, $×$6) is ring ,
\\Now for  $2, 3$ \in R ,   $2× 3= 0$ 
\\i.e.,  product of two non zero element is equal to the zero element of the ring .\\
Hence , $R$ is a ring with zero divisors.}
    
\end{frame}
% ----------------------------------------------------------------------------
% *** END of Test frame >>>
% ----------------------------------------------------------------------------
\end{document}