
Principles of Rendering: Example short paper

Richard Southern∗

National Centre for Computer Animation

Abstract
This document serves to demonstrate the short paper format used
for the Principles of Rendering unit. This submission should be
no longer than 2 pages, inclusive of references and images, but ex-
cluding appendices and code listings. You should aim for between
5 and 8 references in your bibliography. An abstract provides an
executive summary of your short paper.

1 Introduction
In this section you should introduce the shader effect you’re trying
to recreate. You should include a few examples of real reference
images which you are trying to simulate, such as in Figure 1. You
must also decompose the chosen effect into individual layers or ef-
fects which you are going to try to implement.

Figure 1: An example reference image, acquired from [free-
pictures-photos.com 2016].

For example, the strawberry in Figure 1 might exhibit:

1. Regular seed placement which causes small indentations in
the surface.

2. A gentle colour gradiation from tip to top.

3. Narrow specular highlights.

4. Shallow subsurface scattering properties.

5. Soft shadowing.

6. Slight depth of field effect.

You might also use this section to introduce examples of how this
effect may have been created in the past, particularly in books, in-
dustry talks or academic papers, where the method used to recre-
ate the effect is known. Make sure you make use of references
here, such as [Akenine-Möller et al. 2008] or [Pharr and Humphreys
2010] in order to contextualise your work.

2 Method Overview
In this section you should present the final method which you have
implemented in a manner that is as independent of the language
used to create the effect as possible. There are a number of different
ways to do this, for example using a mathematical formulation as

∗e-mail:rsouthern@bournemouth.ac.uk

in Equation 1.

Lo (x, ωo, λ, t) = Le (x, ωo, λ, t)+∫
Ω

fr (x, ωi, ωo, λ, t)Li (x, ωi, λ, t) (ωi · n) dωi (1)

Alternatively you might want to present your method in the form of
a pseudocode algorithm, as in Algorithm 1. You will probably also

Algorithm 1 Euclid’s algorithm

1: procedure EUCLID(a, b) . The g.c.d. of a and b
2: r ← a mod b
3: while r 6= 0 do . We have the answer if r is 0
4: a← b
5: b← r
6: r ← a mod b
7: return b . The gcd is b

find that data flow diagrams1 are very useful in conveying how your
shader is implemented using OpenGL when multiple render passes
are needed.

You should avoid describing your method using code examples if
possible. If you must, an example of code inclusion and markup is
provided in Appendices A and B.

3 Results
Here you should present the rendering results of the method(s)
which you have described in Section 2 above. Ideally, you should
provide a breakdown of the different layers or render passes used
in the construction of the final effect (see Figure 2 for an example).
Where the geometry is complex, it might also be suitable to render
a simple object (a sphere perhaps) to demonstrate the effect of the
different render layers. If you are demonstrating a dynamic effect,
you might want to render several frames of a sequence.

(a) Diff+Spec (b) Diff+Spec+Ambient

Figure 2: A side by side comparison of different render effects is
always a good idea to demonstrate a choice of parameters or design
of your shader. These were appropriated from [Renderman Support
2016].

If you are generating a real time effect, it might also be suitable to
demonstrate with some numbers or statistics the performance im-
provements that you were able to attain by optimisations to your
shader or C++ application.

1See https://en.wikipedia.org/wiki/Data_flow_
diagram.

https://en.wikipedia.org/wiki/Data_flow_diagram
https://en.wikipedia.org/wiki/Data_flow_diagram


You may also want to provide a discussion of development itera-
tions and the thought processes by which you arrived at the final
method presented in Section 2. It is important in this section to be
self-reflective and critical: we don’t expect you to have created the
perfect effect. If you are disatisfied by any aspect of the result, you
should communicate this to us with some sort of explanation.

References
AKENINE-MÖLLER, T., HAINES, E., AND HOFFMAN, N. 2008.

Real-Time Rendering (3rd edition). A.K. Peters Ltd.

FREE-PICTURES-PHOTOS.COM, 2016. Fruits large free pictures for
print. https://www.free-pictures-photos.com/
fruits/.

PHARR, M., AND HUMPHREYS, G. 2010. Physically Based Ren-
dering: From Theory to Implementation. Elsevier.

RENDERMAN SUPPORT, 2016. Writing and compiling a sim-
ple shader. https://renderman.pixar.com/view/
simple-shader-writing.

A Renderman Shader Example
An example of Renderman code listing is included below. Please
make sure that when including code segments that you include only
sections that are directly relevant to the application at hand, and
preferably which link to the method described in Section 2.

Listing 1: Renderman example lifted from [Renderman Support
2016].

surface basicSpecular(
color myOpacity = 1;
float roughness = 0.1;

)
{

color myColor = (1.0, 0.0, 0.0);
normal Nn = normalize(N);
//Specular stuff
vector V = normalize(-I);

Ci = myColor * myOpacity * diffuse(Nn) +←↩
specular(Nn, V, roughness);

Oi = myOpacity;
}

B GLSL Shader Example
An example of a GLSL code listing is included below. Note that
C++ code listing is also supported using the same method.

Listing 2: A simple textured shader.

// The texture coordinates
smooth in vec2 o_TexCoord;

// This is passed on from the vertex shader
in vec3 LightIntensity;

// The texture to be mapped
uniform sampler2D u_Texture;

// This is no longer a built-in variable
out vec4 o_FragColor;

void main() {
// Set the output color of our current pixel
o_FragColor = vec4(LightIntensity,1.0) * ←↩

texture(u_Texture, o_TexCoord);
}

https://www.free-pictures-photos.com/fruits/
https://www.free-pictures-photos.com/fruits/
https://renderman.pixar.com/view/simple-shader-writing
https://renderman.pixar.com/view/simple-shader-writing

