CS 3510 A Homework 2

John Schmidt
Fall 2016

Question 1

We studied in class a linear time deterministic algorithm to find the k-th smallest element of a list of n numbers $\mathrm{A}[1]$ through $\mathrm{A}[n]$. The following is a high-level description of a generalization of this algorithm, in which the algorithm covered in class corresponds to the case $d=2($ Here $d \geq 1$ is an integer constant):

- Step 1: Divide the list into $\frac{n}{2 d+1}$ groups of $(2 \mathrm{~d}+1)$ elements each. This takes $O(\mathrm{n})$ time.
- Step 2: Sort each group and find their medians. Let S be the sequence of medians of these groups. This takes $O(\mathrm{n})$ time.
- Step 3: Recursively find the median of S. Let p be the median of S. (The size of S is $\frac{n}{2 d+1}$.)
- Step 4: Partition the list A around this pivot into three sub-lists: $\mathrm{A}_{<}, \mathrm{A}_{>} p$, and $\mathrm{A}_{=} p$. This takes $\mathrm{O}(\mathrm{n})$ time.
- Step 5: Recurse appropriately on one of these three sub-lists.
(a) (5 points) Show that the size of each of $\mathrm{A}_{<} p$ and $\mathrm{A}_{>}>$in Step 4 above is at most:

$$
\begin{equation*}
n-(d+1) \times \frac{n}{2(2 d+1)} \tag{1}
\end{equation*}
$$

(b) (5 points) What is the recurrence for the running time of this algorithm in terms of n and d ? Explain the recurrence.
(c) What is the solution to this recurrence for:
i. (3 points) $d=1$?
ii. (2 point) $\mathrm{d}=3$?

Explain your answers.

Solution:

Correctness Argument:
Algorithm:
Proof:
Analysis:

Question 2

(15 points) Describe an algorithm that, given an n-digit decimal integer a, outputs the square of that integer in $O(n \log n)$ time. Argue that your algorithm runs in $O(n \log n)$ time and that it is correct.

Solution:

Correctness Argument:
Algorithm:
Proof: Analysis:

Question 3

Consider the butterfly network discussed in class.
Let $\mathrm{N}=8$. The network has four columns of 8 nodes each. Let the columns be $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$. Label the nodes in column C_{i} as $\mathrm{C}_{i 0}, \mathrm{C}_{i 1}, \ldots, \mathrm{C}_{i 7}$. For $0 \leq \mathrm{i} \leq 2,0 \leq \mathrm{j} \leq 7$, from each node $\mathrm{C}_{i j}$ in column i there are two edges (a left edge and a right edge) to nodes in column $\mathrm{i}+1$. Label the left edge as 0 and the right edge as 1 . Denote this network by $\beta 8$.

A path in this network is such that: (a) it has three edges, and (b) it goes from a node in column 0 to a node in column 1 to a node in column 2 to a node in column 3 .

Let (a0, a1, ... a7) be a permutation of $(0,1,2,3,4,5,6,7)$. We say that the network realizes the permutation (a0, a1,..., a7) if there are eight vertex-disjoint paths connecting $\mathrm{C}_{0, j}$ to $\mathrm{C}_{3, a j}$ for $0 \leq \mathrm{j} \leq 7$.

Example: The network realizes the permutation (3, 6, 1, 4, 7, 2, 5, 0) with the following eight vertex-disjoint paths:
$\mathrm{C}_{0,0} \rightarrow \mathrm{C}_{1,1} \rightarrow \mathrm{C}_{2,3} \rightarrow \mathrm{C}_{3,3}$
$\mathrm{C}_{0,1} \rightarrow \mathrm{C}_{1,0} \rightarrow \mathrm{C}_{2,2} \rightarrow \mathrm{C}_{3,6}$
$\mathrm{C}_{0,2} \rightarrow \mathrm{C}_{1,3} \rightarrow \mathrm{C}_{2,1} \rightarrow \mathrm{C}_{3,1}$
$\mathrm{C}_{0,3} \rightarrow \mathrm{C}_{1,2} \rightarrow \mathrm{C}_{2,0} \rightarrow \mathrm{C}_{3,4}$
$\mathrm{C}_{0,4} \rightarrow \mathrm{C}_{1,5} \rightarrow \mathrm{C}_{2,7} \rightarrow \mathrm{C}_{3,7}$
$\mathrm{C}_{0,5} \rightarrow \mathrm{C}_{1,4} \rightarrow \mathrm{C}_{2,6} \rightarrow \mathrm{C}_{3,2}$
$\mathrm{C}_{0,6} \rightarrow \mathrm{C}_{1,7} \rightarrow \mathrm{C}_{2,5} \rightarrow \mathrm{C}_{3,5}$
$\mathrm{C}_{0,7} \rightarrow \mathrm{C}_{1,6} \rightarrow \mathrm{C}_{2,4} \rightarrow \mathrm{C}_{3,0}$
(a) (10 points) Identify eight vertex-disjoint paths that connect $\mathrm{C}_{0 j}$ to $\mathrm{C}_{3, a j}$ for $0 \leq \mathrm{j} \leq 7$, where

$$
\begin{equation*}
a_{j}=\left(\frac{5 j^{2}+5 j+10}{2}\right) \bmod 8 . \tag{2}
\end{equation*}
$$

(b) (5 points) Show, with a counter-example, that this network cannot realize all permutations of ($0,1,2,3,4,5,6,7$).

Solution:

Correctness Argument:

Algorithm:
Proof:
Analysis:

Question 4

Let $\mathrm{A}(\mathrm{x})=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{x}+\ldots+\mathrm{a}_{N-1} \mathrm{x}^{N-1}$ be a polynomial with N coefficients. Assume N is a power of 3 .
Divide $A(x)$ as the sum of three polynomials as shown below:

$$
\begin{equation*}
A(x)=p_{1}\left(x^{3}\right)+x q_{1}\left(x^{3}\right)+x^{2} r_{1}\left(x^{3}\right), \text { where } \tag{3}
\end{equation*}
$$

$\mathrm{p}_{1}(\mathrm{x})=\mathrm{a}_{0}+\mathrm{a}_{3} \mathrm{x}+\ldots+\mathrm{a}_{N-3} \mathrm{x}^{N / 3-1}$
$\mathrm{q}_{1}(\mathrm{x})=\mathrm{a}_{1}+\mathrm{a}_{4} \mathrm{x}+\ldots+\mathrm{a}_{N-2} \mathrm{x}^{N / 3-1}$, and
$r_{1}(x)=a_{2}+a_{5} x+\ldots+a_{N-1} x^{N / 3-1}$.
Let be a principal N-th root of unity. Recall that an element is a principal N-th root of unity if it satisfies the following two properties:

- $\omega^{N}=1$.
- $\omega^{j} \neq 1$ for $1 \leq \mathrm{j} \leq \mathrm{N}-1$.

Let $\omega 1$ be the inverse of. That is, $\omega^{-1} \times \omega=1$.
(a) Assume that the following two claims are true:

Claim 1: For all $0 \leq \mathrm{j} \leq \mathrm{N} / 3-1$,
$\left(\omega^{j}\right)^{3}=\left(\omega^{j+N / 3}\right)^{3}=\left(\omega^{j+2 N / 3}\right)^{3}$.
Corollary: For all $0 \leq \mathrm{j} \leq \mathrm{N} / 3-1, \mathrm{~A}\left(\omega^{j}\right)=\mathrm{A}\left(\omega^{j+N / 3}\right)=\mathrm{A}\left(\omega^{j+2 N / 3}\right)$.
Claim 2: Let ω be a principal N-th root of unity. Then, ω^{3} is a principal N/3-rd root of unity.
(b) (10 points) What does the following algorithm SPOLY compute? Justify your answer. $\operatorname{SPOLY}(\mathrm{A}, \mathrm{N}) \rightarrow \mathrm{R}$
i $\operatorname{EVAL}(\mathrm{A}, \mathrm{N}, \omega) \rightarrow \mathrm{U}$
ii For $0 \leq \mathrm{j} \leq \mathrm{N}-1$ do:
(a) $\mathrm{V}[\mathrm{j}]=\mathrm{U}[\mathrm{j}] \times \mathrm{U}[\mathrm{j}]$
iii $\operatorname{EVAL}\left(\mathrm{V}, \mathrm{N}, \omega^{-1}\right) \rightarrow \mathrm{R}$
iv For $0 \leq \mathrm{j} \leq \mathrm{N}-1$ do:
(a) $\mathrm{R}[\mathrm{j}]=\frac{R[j]}{N}$

The procedure EVAL used by the algorithm above is:
$\operatorname{EVAL}(\mathrm{A}, \mathrm{N}, \omega) \rightarrow \mathrm{U}$
i If $\mathrm{N}=1$ Then Return(A $[0])$.
ii $\mathrm{A} 1 \leftarrow \operatorname{EV} \operatorname{AL}\left(\mathrm{p}_{1}, \frac{N}{3}, \omega^{3}\right)$
iii $\mathrm{A} 2 \leftarrow \mathrm{EV} \operatorname{AL}\left(\mathrm{q}_{1}, \frac{N}{3}, \omega^{3}\right)$
iv $\mathrm{A} 3 \leftarrow \mathrm{EV} \operatorname{AL}\left(\mathrm{r}_{1}, \frac{N}{3}, \omega^{3}\right)$
v For $0 \leq \mathrm{j} \leq \mathrm{N}-1$ Do:
(a) $\mathrm{U}(\mathrm{j})=\mathrm{A} 1(\mathrm{j})+\omega^{j} \mathrm{~A} 2(\mathrm{j})+\omega^{2 j} \mathrm{~A} 3(\mathrm{j})$
(c) (5 points) Write a recurrence for the run-time $\mathrm{T}(\mathrm{n})$ for the algorithm SPOLY and solve it. Explain your recurrence.

Solution:
Correctness Argument:
Algorithm:
Proof:
Analysis:

