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Nature uses only the longest threads

to weave her patterns, so that each

small piece of her fabric reveals the

organization of the entire tapestry

Richard P. Feynman





Abstract

This is the abstract.
The primary objective of this thesis is to address these challenges by developing

advanced Python algorithms based on differentiable programming paradigm, leveraging
the capabilities of PyTorch and TensorFlow frameworks to enable precise modeling and
analysis of gravitational lenses. By employing parametric models, these algorithms
exploit automatic differentiation to backpropagate errors and compute gradients of a loss
function, facilitating the optimization of high-dimensional parameter spaces. Through
the training of these parametric models, relevant features can be extracted and key
parameters of the lensing system can be estimated. The resulting models can then be
applied to real observational data, improving the characterization and classification of
strong lenses with enhanced accuracy and efficiency.

The structure of this thesis is the following: an introduction is presented in Chapters 1
and 2. Chapter 3 describes some examples. Finally, Chapter 4 specifically focus on the
applications.
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Sommario

Questo è il sommario.
L’obiettivo principale di questo lavoro di tesi è quello di affrontare tali questioni

sviluppando algoritmi Python avanzati per la precisa modellizzazione e analisi di lenti
gravitazionali forti, fondati su tecniche di programmazione differenziabile, implementate
utilizzando i framework PyTorch e TensorFlow. Utilizzando modelli parametrici, questi
algoritmi sfruttano la differenziazione automatica per retropropagare gli errori e calcolare
i gradienti di una funzione di costo, facilitando l’ottimizzazione nello spazio dei parametri.
Attraverso l’implementazione in tali modelli parametrici, è possibile estrapolare le
caratteristiche rilevanti e stimare i parametri chiave del sistema in esame. I modelli
risultanti possono essere applicati a dati osservativi reali, migliorando la caratterizzazione
e la classificazione delle lenti con maggiore precisione ed efficienza.

La struttura di questa tesi è la seguente: nei Capitoli 1 e 2 viene presentata
un’introduzione. Il Capitolo 3 descrive alcuni esempi. Il Capitolo 4 si concentra
specificamente sull’applicazione.
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1
Chapter 1

1.1 History

Throughout history, questions surrounding the origin, age, and size of the universe have
fascinated humans. Plato believed in a Universe that remains constant, envisioning
it as an entity that was created perfect, unaging, and free from decay (Plato, 2010).
This view of a static universe prevailed for more than two millennia, and it was so
entrenched in cosmological thinking that even Albert Einstein initially subscribed to it.
To reconcile his field equations of general relativity with the notion of a static universe,
Einstein introduced the cosmological constant, a term that provided a mathematical
means to allow for static solutions to his equations (Einstein, 1917).

However, the early 20th century brought discoveries that challenged the long-standing
paradigm of a static universe. Vesto Slipher made pivotal observations, noting that
most galaxies recede from the Milky Way at high velocities. Building on this foundation,
Edwin Hubble, in the 1920s, conducted an analysis of the escape velocities of distant
galaxies, leading to a groundbreaking discovery. Hubble observed that the farther away
galaxies are, the faster they appear to be moving away. He plotted the radial velocities
of these galaxies against their distances and found that the data could be best described
by a straight line, indicating a linear relationship (Fig. 1.1).

1.2 Friedmann Equations

1.2.1 Expansion rate

According to the Cosmological Principle, on sufficiently large scales, the universe is
homogeneous and isotropic. Considering a sphere with homogeneous density and
a test particle at location x⃗, and introducing a spherical coordinate system that is
allowed to expand with time, due to the cosmological principle, the expansion and the
time-dependent position r⃗(t) can be expressed by

r⃗(t) = a(t)x⃗ , (1.1)
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Figure 1.1. Radial velocities, corrected for solar motion, plotted against distances
estimated from involved stars and mean luminosities of nebulae in a cluster.
Credits: Hubble (1929).

where a(t) is the cosmic scale factor, which does not depend only on time. For t0 = today,
the scale factor is conventionally set to a(t0) = 1. Scalar quantities r, x can be used
instead of r⃗, x⃗ due to isotropy.

1.2.2 Dynamics of the expansion

To derive the Friedmann Equations and to study the evolution of the scale factor a(t),
to better understand the development of the universe, one has to start from Einstein
field’s equation, that describes the geometry of space-time:

Rµν − 1
2Rgµν + gµνΛ = 8πG

c4 Tµν , (1.2)

where Rµν and R are the Ricci tensor and Ricci scalar, respectively, Λ is the cosmological
constant and Tµν is the energy-momentum tensor, which includes all contributions of
energy and acts as the source of gravity.

The energy-momentum tensor of the universe is that of a homogeneous perfect
fluid, characterized by its density ρ(t) and pressure p(t). Using the Robertson-Walker
metric to describe homogeneity and isotropy, the Einstein’s equations simplify to the
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Figure 1.2. Numerical solutions for different cosmological models.
Credits: Hamilton (2019).

Friedmann equations (Friedman, 1922; Friedmann, 1924):

H(t)2 =
(

ȧ

a

)2
= 8πG

3 ρ + Λc2

3 − Kc2

a2 , (1.3a)

ä

a
= −4πG

3

(
ρ + 3p

c2

)
+ Λc2

3 , (1.3b)

where K is a constant parameter that defines the curvature of spatial surfaces:

• K = −1 means open, hyperbolic space (i.e. infinite) with negative curvature;

• K = 0 means flat, Euclidean space;

• K = 1 means closed, spherical space with positive curvature.
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2
Chapter 2

In the realm of astrophysics and gravitational theory, the concept that gravity affects not
only matter but also light has a long history, dating back to Newton’s Opticks (Newton,
1704). The initial calculation of the Newtonian deflection of light rays passing near
massive bodies was undertaken by Cavendish in 1784, and von Soldner subsequently
published these findings in 1804 (Will, 1988, 2014). It was Albert Einstein himself who,
in 1915, as he completed his General Theory of Relativity (Einstein, 1915), recognized
that the Newtonian prediction of light-ray deflection near the Sun was only half the
value foreseen by his revolutionary theory. The confirmation of this twice as large
deflection during the solar eclipse of May 29, 1919, observed by Eddington (Dyson
& Eddington, 1920; Will, 2015), marked a momentous confirmation of this nascent
theory and captivated global attention. Not only did this observation represent the
first in a series of triumphs for general relativity, but it also inaugurated the practical
application of gravitational lensing, a method that would later become a cornerstone of
observational astrophysics.

More than a century has passed since that pivotal moment, and gravitational lensing
has evolved into a well-established and respected tool within the fields of astronomy
and astrophysics. Presently, the study of lensing theory and its applications can be
broadly categorized into three distinct components (Kochanek, 2004): strong lensing,
characterized by non-linear deflection at the scale of galaxies and galaxy clusters,
produces distinct phenomena such as multiple images, arcs, and rings, weak lensing,
observed on both cluster and cosmological scales, is a subtle linear effect that gently
aligns background galaxies with intervening matter. Statistical analysis of the observed
distribution of light allows for the extraction of information regarding the distribution
of intervening matter. Finally, microlensing involves the dynamic fluctuation of light
when compact objects pass in front of background sources at scales too minute to be
resolved.

2.1 Light deflection

According to Einstein’s theory of relativity, objects with gravitational pull have the
ability to alter the fabric of space-time, resulting in the bending of light rays (Narayan &
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Bartelmann, 1997) . Gravitational lensing occurs when a substantial mass distribution
can effectively curve and amplify the light emitted from a source positioned behind it.

The calculation of light deflection involves the examination of geodesic curves
originating from the field equations of general relativity. Light deflection can also be
understood through Fermat’s principle1, similar to how it is described in geometrical
optics. The main approach is to consider light deflection within the framework of general
relativity as a refraction problem, for which a refractive index n can be introduced.

To investigate the bending of light and to determine the refractive index, an initial
approximation is made by assuming that the lens is “weak” and significantly smaller than
the source-lens-observer optical system, an assumption true for nearly all astrophysical
scenarios. This “weak field” approximation refers to a lens with a relatively small
Newtonian gravitational potential, which means ϕ ≪ c2, where c is the speed of light.
Additionally, it is plausible to assume that light deflection occurs within a region small
enough that the expansion of the universe can be disregarded. Leveraging the principle
of equivalence, one can select a locally inertial frame in which space-time is flat and
described by Minkowski’s metric. In this context, the line element of the local metric
tensor can be written as a small perturbation of the metric, such as

ds2 = gµν dxµ dxν =
(

1 + 2ϕ

c2

)
c2 dt2 −

(
1 − 2ϕ

c2

)
dx⃗2 . (2.1)

Applying Fermat’s principle, the total deflection angle of a photon is the integral
over the gradient of the potential perpendicular to the light path along the proper light
path. Thanks to the Born approximation2, it can be shown (Schneider et al., 1992) that
the deflection angle can be obtained integrating over the unperturbed light path:

ˆ⃗α(⃗ξ) = 2
c2

∫ +∞

−∞
∇⃗⊥ϕ(⃗ξ, z) dz , (2.2)

where ξ is the impact parameter of the photon traveling along the e⃗z direction that
passes through the lens at z = 0 (Fig. 2.1).

1Light travels between two points along the path that requires the least time.
2Simplification valid when the gravitational potential is small: deflection of light is treated like a

linear process, neglecting higher-order corrections.
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Figure 2.1. Schematics for the Born approximation.
Credits: Meneghetti (2021).
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Chapter 3

This chapter delves into the intricate process of lens modeling, a pivotal technique
for interpreting gravitational lensing observations. Gravitational lens models can be
separated into two main categories: point-mass lenses (i.e. microlenses) and extended
lenses, each possessing distinctive characteristics. Microlensing refers to the lensing effect
caused by objects with relatively small masses, such as stars or planets, acting as lenses.
Unlike their more massive counterparts, microlenses do not produce multiple discernible
images of the background source. Instead, they induce magnification variations over time
as the lens moves relative to the observer and the source. Transitioning to a grander scale,
extended lenses involve massive structures like galaxies and galaxy clusters, capable of
producing multiple, resolvable images of background sources.

3.1 Microlenses

This section is devoted to exploring the phenomenon of microlensing, which refers to the
lensing effects caused by objects of relatively small mass in the universe, such as planets,
stars, star clusters, and other compact objects located within the Milky Way or distant
galaxies. Typically, these microlenses are considered, in a first-order approximation, to
be point-masses or collections of point-masses.

3.1.1 Deflection angle and lensing potential

As already derived, by setting the lens position as the center of the reference frame and
using the relation ξ = DLθ, the deflection angle for a point mass lens can be written as

α⃗(⃗θ) = DLS

DS

ˆ⃗α(⃗θ) = DLS

DS

4GM

c2DL

θ⃗

|⃗θ|2
. (3.1)

Given that α⃗(⃗θ) = ∇⃗Ψ̂(⃗θ), the lensing potential of the point mass lens is

Ψ̂(⃗θ) = 4GM

c2
DLS

DLDS
ln |⃗θ| . (3.2)
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Figure 3.1. Solutions of the lens equation for a point-mass, with the lens represented
by the star at the center. The Einstein ring is highlighted in black. In the right diagram,
the locations of various sources are marked with colored circles. The images produced,
as calculated using Eq. (3.5), are displayed in the left diagram.
Credits: Meneghetti (2021).

3.1.2 Lens equation and multiple images

Given the deflection angle of Eq. (3.1), the lens equation becomes

β = θ − 4GM

c2θ

DLS

DLDS
, (3.3)

where the vector signs can be omitted due to the fact that the vector ˆ⃗α always points
away from the lens.

As already anticipated in Section 2.1, the lens equation can be written in a more
concise way by introducing a scale radius θE , i.e. the Einstein radius defined in Eq. (3.1),
and setting y = β/θE and x = θ/θE , results:

β = θ − θ2
E

θ
⇒ y = x − 1

x
. (3.4)

This equation is quadratic in θ (or x) and has two solutions:

x± = y ±
√

y2 + 4
2 , (3.5)

which means that there always exist two images for a given source position.
In the right section of Fig. 3.1, some sources are arranged at varying angular distances

12
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from the lens, which is marked by a red star. Each source is represented by a unique
color to facilitate the identification of its corresponding images in the left section. Each
source generates two images: one positioned at x+ > 0 and the other in the range of
−1 < x− < 0. These images appear on either side of the lens, with the x− image always
lying within a circle of radius x = 1. This circle is equivalent to the image produced by
a source directly behind the point lens at y = 0, resulting in a ring-shaped image with
radius θE , the Einstein ring. The size of the Einstein radius is typically

θE ≈ 1′′
(

M

1012M⊙

)1/2 (
D

Gpc

)−1/2
, (3.6)

where
D ≡ DLDS

DLS
(3.7)

is the effective lensing distance.
As the angular separation y → 0, it is observed that x− → 0, whereas x+ → y. This

indicates that when the angular distance between the lens and the source increases
significantly, the source is unlensed. In theory, an image still exists at x− = 0, but this
central image has zero magnification.

3.1.3 Critical lines, caustics and magnification

The Jacobian determinant for a point-mass lens can be written as

det A(x) = y

x

dy

dx
, (3.8)

which means that the eigenvalues of the Jacobian matrix are

λt(x) = y

x
=

(
1 − 1

x2

)
, (3.9a)

λr(x) = dy

dx
=

(
1 + 1

x2

)
. (3.9b)
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Chapter 4

Building on the foundational understanding of gravitational lensing and its computational
challenges, a critical aspect of modern astrophysical research involves the optimization
of parametric functions to model the complex phenomena of the Universe accurately.
This optimization is essential in gravitational lensing studies, where precise models of
the mass distribution within lensing objects are paramount for interpreting the observed
lensing effects. The optimization process often requires navigating a high-dimensional
parameter space to find the best-fit parameters that reconcile theoretical models with
observational data, a task that can be computationally intensive and algorithmically
complex.

In this context, the advent of frameworks such as PyTorch1 (Paszke et al., 2019) and
TensorFlow2 (Abadi et al., 2016) represents a significant leap forward for astrophysical
research. These open-source libraries, primarily developed for deep learning applications,
offer powerful tools for automatic differentiation, a technique that facilitates the calcu-
lation of gradients automatically, a cornerstone for any optimization algorithm. The
ability of PyTorch and TensorFlow to efficiently compute derivatives of highly complex,
nested functions makes them exceptionally well suited for optimizing parametric models
in gravitational lensing studies.

Moreover, PyTorch and TensorFlow are designed to exploit the capabilities of modern
computing hardware, including GPUs and TPUs, enabling the parallel processing of
large datasets and the acceleration of computational tasks. This feature is particularly
beneficial for gravitational lensing research, where handling large amounts of observa-
tional data and running complex simulations is commonplace. Using the computational
power offered by these frameworks, one can significantly reduce the time required for
model optimization and data analysis, thus enhancing the efficiency of the investigations.

4.1 Differentiable programming

Differentiable programming is an advanced computational paradigm that unites tra-
ditional programming concepts with the principles of differentiation, a fundamental

1https://pytorch.org
2https://www.tensorflow.org
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4.1. DIFFERENTIABLE PROGRAMMING CHAPTER 4. CHAPTER 4

concept in calculus. This approach extends the idea of computing derivatives to entire
programs, enabling the automatic calculation of gradients of program outputs with
respect to inputs. Differentiable programming is particularly powerful in the context
of optimization, machine learning, and artificial intelligence, where it facilitates effi-
cient parameter tuning to minimize or maximize some objective function. Methods for
computing derivatives in computer programs can be classified into four categories (see
Fig. 4.1):

1. manually working out derivatives and coding them;

2. numerical differentiation, involves approximating the derivative of a function
using values of the original function evaluated at some sample points (Burden
et al., 2016). In its simplest form, it is based on the limit definition of a derivative.
It is quite simple to implement and apply to a wide range of problems, especially
when dealing with data-driven models or functions that lack a clear analytical
representation. Its effectiveness diminishes in high-dimensional settings, where
the complexity and computational demands increase exponentially, highlighting
the method’s limitations in handling complex, multi-variable functions efficiently;

3. symbolic differentiation, which refers to the automatic process of finding
derivatives using the rules of differentiation to obtain an exact symbolic expression
for the derivative of a given function (Grabmeier et al., 2003). This method works
similarly to how humans perform differentiation “by hand”, manipulating symbols
according to mathematical laws;

4. automatic differentiation (AD), also called algorithmic differentiation,is a
method that computes the derivative of a function efficiently and accurately by
systematically applying the chain rule of calculus to the sequence of elementary op-
erations (additions, multiplications, trigonometric functions, etc.) that constitute
a computer program. All numerical computations are ultimately compositions of
a finite set of elementary operations for which derivatives are known (Verma, 2000;
Griewank & Walther, 2008), and combining the derivatives of the constituent
operations through the chain rule of calculus3 gives the derivative of the overall
composition. AD is not an approximation like numerical differentiation, but rather
computes derivatives to machine precision.

3The derivative of the composition of two (or more) differentiable functions f and g can be expressed
in terms of the derivatives of the single functions f and g. If h(x) = f(g(x)), then h′(x) = f ′(g(x))g′(x).

18
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Figure 4.1. Summary of techniques to calculate derivatives.
Credits: Margossian (2019).

In particular, differentiable programming refers to using automatic differentiation in
some way that allows a program to optimize its parameters to improve on some task. It
only has three requirements:

1. a parameterized function/model to be optimized;

2. (automatic) differentiability of the object to be optimized;

3. a function suitable to measure the performance of the model.

The process of optimizing a model in the field of differentiable programming is often
called training. In the subsequent portion of this section, a comprehensive overview of
automatic differentiation and its role in the training process will be provided. This will
be followed by an in-depth exposition of the process itself.

4.1.1 Automatic differentiation

Computational graph

As already stated, automatic differentiation operates on the fundamental principle that
complex functions can be decomposed into a series of elementary arithmetic operations.
Given a target composite function f(x) = h ◦ g(x) = h(g(x)), with x ∈ Rn, g : Rn → Rk,
and h : Rk → Rm, applying the chain rule and elementary matrix multiplication, the

19
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corresponding Jacobian matrix4 J is thus:

J = Jh◦g = Jh(g(x)) · Jg(x) , (4.1)

with (i, j)th element:

Jij = ∂fi

∂xj
= ∂hi

∂g1

∂g1
∂xj

+ ∂hi

∂g2

∂g2
∂xj

+ . . . + ∂hi

∂gk

∂gk

∂xj
. (4.2)

More generally, if f is the composite expression of L functions

f = fL ◦ fL−1 ◦ . . . ◦ f1 , (4.3)

the corresponding Jacobian matrix will be

J = JL · JL−1 · . . . · J1 . (4.4)

Hence, given a complex function f , it is possible to break down the action of the Jacobian
matrix on a vector into simple components. So, following Griewank & Walther (2008)
notation, a function f : Rn → Rm can be constructed using intermediate variables vi

such that

• variables vi−n = xi, i = 1, . . . , n are the input variables,

• variables vi, i = 1, . . . , l are the intermediate variables,

• variables ym−i = vl−i, i = m − 1, . . . , 0 are the output variables.

The representation of all the elementary operations that take place to construct a certain
function f is called the evaluation trace, which can also be pictured as a computational
graph (Bauer, 1974), useful for visualizing the dependency relations between intermediate
variables. Figure 4.2 shows the computation graph for an example function f : R2 → R:

f(x1, x2) = ln (x1) + x1x2 − sin (x2) . (4.5)

Given the computational graph of all elementary operations, AD can be implemented
in two main modes: forward accumulation mode and reverse accumulation mode
(backward mode).

4The Jacobian matrix of a vector-valued function of several variables is the matrix of all its first-order
partial derivatives.
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Figure 4.2. Computational graph of the example f(x1, x2) = ln (x1) + x1x2 − sin (x2).
Credits: Baydin et al. (2018).

4.2 Light sources modeling

The prevalent approach to modeling light sources such as galaxies involves using a
parametric profile (R), where R represents a measure of distance from the center of the
object. These models often presuppose an excessively idealized level of symmetry, yet
offer the advantage of being straightforward to define and apply. When building galaxy
components, it is generally assumed that the profiles exhibit elliptical symmetry (Peng
et al., 2002, 2010), and therefore R represents the elliptical radius

R(x⃗′) =
√

x′
1

2 + x′
2/q2 (4.6)

of a source with an axis ratio q. The coordinate system (x′
1, x′

2) of the source can be
rotated by the position angle φ with respect to the coordinate system (x1, x2) of the
observation. The resulting isophotes5 of the surface brightness distribution of such an
elliptical source are ellipses with semi-major axis R/q, semi-minor axis R and orientation
φ with respect to the x1 axis of observation.

4.2.1 Sérsic profile

The most common model to describe elliptical surface brightness distributions is the
Sérsic law (Sérsic, 1963, 1968), which is given by the exponential

I(R) = Ie exp
{

−bn

[(
R

Re

) 1
n

− 1
]}

, (4.7)

5Curves of constant surface brightness.
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where Ie is the surface brightness at the effective radius6 Re and n > 0 is called the
Sérsic index, which characterizes the slope of the profile. The function bn depends only
on the Sérsic index and is defined by

γ(2n, bn) = 1
2Γ(2n) , (4.8)

where Γ, γ are, respectively, the Gamma function and the incomplete Gamma function.
It can be shown (Ciotti, 1991; Ciotti & Bertin, 1999) that, for a Sérsic index in the
range 0.5 ≤ n ≲ 8, bn can be approximated by

bn ≈ 2n − 1
3 + 4

405n
≈ 1.9992n − 0.3271 . (4.9)

With this, the profile is now fully determined by the seven parameters for position x1,
x2, effective radius Re, Sérsic index n, intensity at the effective radius Ie, axis ratio q

and position angle φ.
The Sérsic profile is a versatile model; by varying n it is possible to obtain many

of the classical galaxy profiles as special cases, such as Gaussian profiles (n = 0.5),
exponential profiles (n = 1) and de Vaucouleurs (de Vaucouleurs, 1948) profiles (n = 4).

6Also called the half-light radius, the radius within which half of the galaxy’s luminosity is contained.
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Figure 4.3. Sérsic profiles for different values of n. On average, n ≈ 2 − 10 for bulges
and elliptical galaxies, n ≈ 1 for disk galaxies and n ≤ 0.5 for bars and stellar clumps.
Credits: Burke (2013).
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5
Summary and conclusions

In this thesis, we have systematically explored the application of automatic differentiation
(AD) and differentiable programming methods, utilizing the computational capabilities
of PyTorch and TensorFlow, to address various aspects of gravitational lensing. This
exploration was aimed at enhancing the optimization of parametric functions and
models, which are critical for accurately modeling gravitational lensing phenomena. This
concluding chapter aims to concisely summarize this work, emphasizing the integration
of AD in gravitational lensing and detailing the specific topics addressed.

Looking ahead, AD promises to revolutionize gravitational lensing studies further
by facilitating the development of sophisticated models for complex phenomena and
enabling efficient analysis of vast astronomical datasets. Its integration into time-delay
cosmography and non-parametric mass reconstruction could yield deeper insights into
the universe’s expansion and structure. Moreover, AD’s role in processing data from
upcoming large-scale surveys will be pivotal in uncovering new discoveries and enhancing
our cosmological understanding.

In summary, AD’s contribution to gravitational lensing fields is profound, offering a
pathway to novel discoveries and a deeper understanding of the cosmos. Its continued
development and application stand to unlock even greater potentials in astrophysical
research.
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A.1 Section header

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.
Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis
egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum
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sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices
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nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi,
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Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis.
Pellentesque cursus luctus mauris.
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Vestibulum pellentesque felis eu massa.
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platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum
fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio
placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh
sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.
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