Full Title Of Presentation

Author Name

authoremail@stanford.edu

< ロ > < 回 > < 回 > < 回 > < 回 >

Department of Mechanical Engineering Stanford University

June 16, 2020

Introduction

Examples

Assistive Robotics and Manipulation Lab

メロト メロト メヨト メヨト

Itemize example

▶ Item 1

Item 2

Table 1: Example of Table - Taxonomy of human intent prediction

Human		Execution Strategy (Action)		
		Observer	Observer	
		Knows	Unknown	
Objective Function	Observer	All is Known (e.g. Ping Pong)	Human Action Model is unclear	
	Knows	where both objective and actions are clear	or suboptimal (e.g. chess)	
	Observer Unknown	Human action model is well known, but objective is not (e.g. joy-riding in car or free running, where destination or direction is unclear)	Poor action model and objective function (e.g. Poor / good cook, no idea of final dish)	

Tables can be referenced as Table 1

・ロト ・日 ・ ・ ヨト ・

Introduction (cont.)

Example of a figure, shown in Figure 2.

・ロト ・日下・ ・ ヨト・

(a) Single Kinect setup for fall prevention in elderly residence $\left[1\right]$

(b) Multiple Kinects calibration for fall prediction[2]

・ロト ・回ト・モート

Figure 3: Examples of Horizontal Subfigures

Example of Horizontal Alignment of a table and a figure.

Table 2: Environment limitations on data collection

	Kinect	Stereo	Kinect + Stereo
Indoor	1	1	1
Outdoor	X	1	1
High number of features	1	1	1
Low number of features	1	×	1

< ロ > < 回 > < 回 > < 回 > < 回 >

min

subject to

 $J = \int (a_{real} - \hat{a})^2$ human kinematics no collision no falling

< ロ > < 回 > < 回 > < 回 > < 回 >

$${}^{A}R_{B}(t_{0}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \sin(\theta) \begin{bmatrix} 0 & -v_{3} & v_{2} \\ v_{3} & 0 & -y_{1} \\ -v_{2} & v_{1} & 0 \end{bmatrix} +$$
(1)
$$(1 - \cos(\theta)) \begin{bmatrix} 0 & -v_{3} & v_{2} \\ v_{3} & 0 & -v_{1} \\ -v_{2} & v_{1} & 0 \end{bmatrix}^{2}$$

$${}^{A}R_{B}(t) = \Delta R^{A}R_{B}(t_{0})$$
(2)
$$\Delta R = {}^{A}R_{B}(t){}^{A}R_{B}^{T}(t_{0})$$
(3)

・ロト ・四ト ・ヨト ・ヨト

イロト イヨト イヨト イヨ

- E. E. Stone and M. Skubic, "Fall detection in homes of older adults using the Microsoft Kinect," *IEEE journal of biomedical and health informatics*, vol. 19, no. 1, pp. 290-301, 2014. DOI: 10.1109/JBHI.2014.2312180. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6774430.
- [2] A. N. Staranowicz, C. Ray, and G.-L. Mariottini, "Easy-to-use, general, and accurate multi-Kinect calibration and its application to gait monitoring for fall prediction," in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2015, pp. 4994–4998. DOI: 10.1109/EMBC.2015.7319513. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7319513/.

< □ > < 同 > < 回 > < 回 >