81 METAFONT changes for C PART 1: INTRODUCTION 3

1. Introduction. This is METAFONT, a font compiler intended to produce typefaces of high quality.
The Pascal program that follows is the definition of METAFONTS84, a standard version of METAFONT that
is designed to be highly portable so that identical output will be obtainable on a great variety of computers.
The conventions of METAFONTS84 are the same as those of TEX82.

The main purpose of the following program is to explain the algorithms of METAFONT as clearly as
possible. As a result, the program will not necessarily be very efficient when a particular Pascal compiler has
translated it into a particular machine language. However, the program has been written so that it can be
tuned to run efficiently in a wide variety of operating environments by making comparatively few changes.
Such flexibility is possible because the documentation that follows is written in the WEB language, which is at
a higher level than Pascal; the preprocessing step that converts WEB to Pascal is able to introduce most of the
necessary refinements. Semi-automatic translation to other languages is also feasible, because the program
below does not make extensive use of features that are peculiar to Pascal.

A large piece of software like METAFONT has inherent complexity that cannot be reduced below a certain
level of difficulty, although each individual part is fairly simple by itself. The WEB language is intended to
make the algorithms as readable as possible, by reflecting the way the individual program pieces fit together
and by providing the cross-references that connect different parts. Detailed comments about what is going
on, and about why things were done in certain ways, have been liberally sprinkled throughout the program.
These comments explain features of the implementation, but they rarely attempt to explain the METAFONT
language itself, since the reader is supposed to be familiar with The METAFONT book.

2. The present implementation has a long ancestry, beginning in the spring of 1977, when its author wrote
a prototype set of subroutines and macros that were used to develop the first Computer Modern fonts.
This original proto-METAFONT required the user to recompile a SAIL program whenever any character
was changed, because it was not a “language” for font design; the language was SAIL. After several hundred
characters had been designed in that way, the author developed an interpretable language called METAFONT,
in which it was possible to express the Computer Modern programs less cryptically. A complete METAFONT
processor was designed and coded by the author in 1979. This program, written in SAIL, was adapted for
use with a variety of typesetting equipment and display terminals by Leo Guibas, Lyle Ramshaw, and David
Fuchs. Major improvements to the design of Computer Modern fonts were made in the spring of 1982, after
which it became clear that a new language would better express the needs of letterform designers. Therefore
an entirely new METAFONT language and system were developed in 1984; the present system retains the
name and some of the spirit of METAFONT79, but all of the details have changed.

No doubt there still is plenty of room for improvement, but the author is firmly committed to keeping
METAFONT84 “frozen” from now on; stability and reliability are to be its main virtues.

On the other hand, the WEB description can be extended without changing the core of METAFONTS84 itself,
and the program has been designed so that such extensions are not extremely difficult to make. The banner
string defined here should be changed whenever METAFONT undergoes any modifications, so that it will be
clear which version of METAFONT might be the guilty party when a problem arises.

If this program is changed, the resulting system should not be called ‘METAFONT’; the official name
‘METAFONT’ by itself is reserved for software systems that are fully compatible with each other. A special
test suite called the “TRAP test” is available for helping to determine whether an implementation deserves to
be known as ‘METAFONT’ [cf. Stanford Computer Science report CS1095, January 1986].

define banner = “Thisis METAFONT, Version,,2.7182818 { printed when METAFONT starts }

4 PART 1: INTRODUCTION METAFONT changes for C 83

3. Different Pascals have slightly different conventions, and the present program expresses METAFONT in
terms of the Pascal that was available to the author in 1984. Constructions that apply to this particular
compiler, which we shall call Pascal-H, should help the reader see how to make an appropriate interface for
other systems if necessary. (Pascal-H is Charles Hedrick’s modification of a compiler for the DECsystem-10
that was originally developed at the University of Hamburg; cf. SOFTWARE—Practice & Experience 6
(1976), 29-42. The METAFONT program below is intended to be adaptable, without extensive changes, to
most other versions of Pascal, so it does not fully use the admirable features of Pascal-H. Indeed, a conscious
effort has been made here to avoid using several idiosyncratic features of standard Pascal itself, so that most
of the code can be translated mechanically into other high-level languages. For example, the ‘with’ and
‘new’ features are not used, nor are pointer types, set types, or enumerated scalar types; there are no ‘var’
parameters, except in the case of files or in the system-dependent paint_row procedure; there are no tag
fields on variant records; there are no real variables; no procedures are declared local to other procedures.)

The portions of this program that involve system-dependent code, where changes might be necessary
because of differences between Pascal compilers and/or differences between operating systems, can be
identified by looking at the sections whose numbers are listed under ‘system dependencies’ in the index.
Furthermore, the index entries for ‘dirty Pascal’ list all places where the restrictions of Pascal have not been
followed perfectly, for one reason or another.

4. The program begins with a normal Pascal program heading, whose components will be filled in later,
using the conventions of WEB. For example, the portion of the program called ‘(Global variables 13)’ below
will be replaced by a sequence of variable declarations that starts in §13 of this documentation. In this way,
we are able to define each individual global variable when we are prepared to understand what it means; we
do not have to define all of the globals at once. Cross references in §13, where it says “See also sections 20,
26, ...,” also make it possible to look at the set of all global variables, if desired. Similar remarks apply to
the other portions of the program heading.

Actually the heading shown here is not quite normal: The program line does not mention any output
file, because Pascal-H would ask the METAFONT user to specify a file name if output were specified here.

define mtype = t@&y0&p&e { this is a WEB coding trick: }
format mitype = type {‘mtype’ will be equivalent to ‘type’ }
format type = true {but ‘type’ will not be treated as a reserved word }

(Compiler directives 9)
program MF; {all file names are defined dynamically }
label (Labels in the outer block 6)
const (Constants in the outer block 11)
mtype (Types in the outer block 18)
var (Global variables 13)

procedure initialize; {this procedure gets things started properly }
var (Local variables for initialization 19)
begin (Set initial values of key variables 21)
end;

(Basic printing procedures 57)
(Error handling procedures 73)

5. The overall METAFONT program begins with the heading just shown, after which comes a bunch of
procedure declarations and function declarations. Finally we will get to the main program, which begins
with the comment ‘start_here’. If you want to skip down to the main program now, you can look up
‘start_here’ in the index. But the author suggests that the best way to understand this program is to
follow pretty much the order of METAFONT’s components as they appear in the WEB description you are
now reading, since the present ordering is intended to combine the advantages of the “bottom up” and “top
down” approaches to the problem of understanding a somewhat complicated system.

86 METAFONT changes for C PART 1: INTRODUCTION 5

6. Three labels must be declared in the main program, so we give them symbolic names.

define start_.of- MF =1 {go here when METAFONT’s variables are initialized }
define end_of-MF = 9998 { go here to close files and terminate gracefully }
define final_end = 9999 {this label marks the ending of the program }

(Labels in the outer block 6) =
start_of MF, end_of-MF, final_end; {key control points }

This code is used in section 4.

7. Some of the code below is intended to be used only when diagnosing the strange behavior that sometimes
occurs when METAFONT is being installed or when system wizards are fooling around with METAFONT
without quite knowing what they are doing. Such code will not normally be compiled; it is delimited by the
codewords ‘debug...gubed’, with apologies to people who wish to preserve the purity of English.

Similarly, there is some conditional code delimited by ‘stat ...tats’ that is intended for use when statistics
are to be kept about METAFONT’s memory usage. The stat ... tats code also implements special diagnostic
information that is printed when tracingedges > 1.

define debug = ifdef (" TEXMF_DEBUG ")
define gubed = endif ("TEXMF_DEBUG ")
format debug = begin

format gubed = end

define stat = ifdef ("STAT")
define tats = endif ("STAT")
format stat = begin
format tats = end

8. This program has two important variations: (1) There is a long and slow version called INIMF, which
does the extra calculations needed to initialize METAFONT’s internal tables; and (2) there is a shorter and
faster production version, which cuts the initialization to a bare minimum. Parts of the program that are
needed in (1) but not in (2) are delimited by the codewords ‘init . .. tini’.

define init = ifdef ("INIMF ")

define tini =

format init

format tini

begin
end

9. If the first character of a Pascal comment is a dollar sign, Pascal-H treats the comment as a list of
“compiler directives” that will affect the translation of this program into machine language. The directives
shown below specify full checking and inclusion of the Pascal debugger when METAFONT is being debugged,
but they cause range checking and other redundant code to be eliminated when the production system is
being generated. Arithmetic overflow will be detected in all cases.

(Compiler directives 9) =
e{e&$C—, A+, D—@} {no range check, catch arithmetic overflow, no debug overhead }
debug @{@x$C+, D+@} gubed {but turn everything on when debugging }

This code is used in section 4.

6 PART 1: INTRODUCTION METAFONT changes for C 810

10. This METAFONT implementation conforms to the rules of the Pascal User Manual published by Jensen
and Wirth in 1975, except where system-dependent code is necessary to make a useful system program, and
except in another respect where such conformity would unnecessarily obscure the meaning and clutter up
the code: We assume that case statements may include a default case that applies if no matching label is
found. Thus, we shall use constructions like

case x of

1: (code for x =1);

3: (code for z = 3);

othercases (code for z # 1 and x # 3)
endcases

since most Pascal compilers have plugged this hole in the language by incorporating some sort of default
mechanism. For example, the Pascal-H compiler allows ‘others:” as a default label, and other Pascals allow
syntaxes like ‘else’ or ‘otherwise’ or ‘otherwise:’, etc. The definitions of othercases and endcases should
be changed to agree with local conventions. Note that no semicolon appears before endcases in this program,
so the definition of endcases should include a semicolon if the compiler wants one. (Of course, if no default
mechanism is available, the case statements of METAFONT will have to be laboriously extended by listing
all remaining cases. People who are stuck with such Pascals have, in fact, done this, successfully but not
happily!)

define othercases = others: { default for cases not listed explicitly }

define endcases = end {follows the default case in an extended case statement }

format othercases = else

format endcases = end

811 METAFONT changes for C PART 1: INTRODUCTION 7

11. The following parameters can be changed at compile time to extend or reduce METAFONT’s capacity.
They may have different values in INIMF and in production versions of METAFONT.

define file_name_size = mazxint
define ssup_error_line = 255
define ssup_screen_width = 32767
define ssup_screen_depth = 32767

(Constants in the outer block 11) =

maz_internal = 300; { maximum number of internal quantities }

stack_size = 300; { maximum number of simultaneous input sources }

maz_strings = 7500; {maximum number of strings; must not exceed maz_halfword }

string_vacancies = 74000; {the minimum number of characters that should be available for the user’s
identifier names and strings, after METAFONT’s own error messages are stored }

pool_size = 100000; { maximum number of characters in strings, including all error messages and
help texts, and the names of all identifiers; must exceed string_vacancies by the total length of
METAFONT’s own strings, which is currently about 22000 }

move_size = 20000; { space for storing moves in a single octant }

maz-wiggle = 1000; {number of autorounded points per cycle }

pool_name = TEXMF_POOL_NAME; {string that tells where the string pool appears }

engine_name = TEXMF_ENGINE_NAME; {the name of this engine }

path_size = 1000; { maximum number of knots between breakpoints of a path }

bistack_size = 1500; {size of stack for bisection algorithms; should probably be left at this value }

header_size = 100; { maximum number of TFM header words, times 4 }

lig_table_size = 15000;
{ maximum number of ligature/kern steps, must be at least 255 and at most 32510 }

maz_kerns = 2500; { maximum number of distinct kern amounts }

maz_font_dimen = 60; {maximum number of fontdimen parameters }

inf-main_memory = 3000; sup_main_memory = 8000000; inf buf size = 500; sup_buf _size = 30000000;

This code is used in section 4.

12. Like the preceding parameters, the following quantities can be changed at compile time to extend or
reduce METAFONT’s capacity. But if they are changed, it is necessary to rerun the initialization program
INIMF to generate new tables for the production METAFONT program. One can’t simply make helter-skelter
changes to the following constants, since certain rather complex initialization numbers are computed from
them. They are defined here using WEB macros, instead of being put into Pascal’s const list, in order to
emphasize this distinction.

define mem_min =0 {smallest index in the mem array, must not be less than min_halfword }
define hash_size = 9500

{ maximum number of symbolic tokens, must be less than maz_halfword — 3 % param_size }
define hash_prime = 7919 {a prime number equal to about 85% of hash_size }
define maz_in_open = 15

{ maximum number of input files and error insertions that can be going on simultaneously }
define param_size = 150 { maximum number of simultaneous macro parameters }

8 PART 1: INTRODUCTION METAFONT changes for C 813

13. In case somebody has inadvertently made bad settings of the “constants,” METAFONT checks them
using a global variable called bad.
This is the first of many sections of METAFONT where global variables are defined.

(Global variables 13) =
bad: integer; {is some “constant” wrong? }

init ini_version: boolean; {are we INIMF? Set in 1ib/texmfmp.c }
dump_option: boolean; {was the dump name option used? }
dump_line: boolean; {was a %&base line seen? }

tini
dump_name: const_cstring; {base name for terminal display }
bound_default: integer; {temporary for setup }
bound_name: const_cstring; {temporary for setup }

main_memory: integer; {total memory words allocated in initex }

mem_top: integer; {largest index in the mem array dumped by INIMF; must be substantially larger than
mem._bot, equal to mem_maz in INIMF, else not greater than mem_maz }

mem_maz: integer; {greatest index in METAFONT’s internal mem array; must be strictly less than
maz_halfword; must be equal to mem_top in INIMF, otherwise > mem_top }

buf_size: integer; {maximum number of characters simultaneously present in current lines of open files;
must not exceed maz_halfword }

error_line: integer; { width of context lines on terminal error messages }

half_error_line: integer; {width of first lines of contexts in terminal error messages; should be between 30
and error_line — 15}

maz_print_line: integer; {width of longest text lines output; should be at least 60 }

screen_width: integer; {number of pixels in each row of screen display }

screen_depth: integer; {number of pixels in each column of screen display }

gf-buf_size: integer; {size of the output buffer, must be a multiple of 8 }

parse_first_line_p: c_int_type; { parse the first line for options }

file_line_error_style_p: c_int_type; {output file:line:error style errors. }

eight_bit_p: c_int_type; { make all characters printable by default }

halt_on_error_p: c_int_type; {stop at first error }

quoted_filename: boolean; {current filename is quoted }

See also sections 20, 25, 29, 38, 42, 50, 54, 68, 71, 74, 91, 97, 129, 137, 144, 148, 159, 160, 161, 166, 178, 190, 196, 198, 200,

201, 225, 230, 250, 267, 279, 283, 298, 308, 309, 327, 371, 379, 389, 395, 403, 427, 430, 448, 455, 461, 464, 507, 552, 555,

557, 566, 569, 572, 579, 585, 592, 624, 628, 631, 633, 634, 659, 680, 699, 738, 752, 767, 768, 775, 782, 785, 791, 796, 813,
821, 954, 1077, 1084, 1087, 1096, 1119, 1125, 1130, 1149, 1152, 1162, 1183, 1188, 1203, and 1214

This code is used in section 4.

14. Later on we will say ‘if mem_max > maz_halfword then bad < 10, or something similar. (We can’t
do that until maz_halfword has been defined.)

(Check the “constant” values for consistency 14) =
bad + 0;
if (half-error_line < 30) V (half-error_line > error_line — 15) then bad «+ 1;
if maz_print_line < 60 then bad < 2;
if gf buf_size mod 8 # 0 then bad < 3;
if mem_min 4 1100 > mem_top then bad < 4;
if hash_prime > hash_size then bad < 5;
if header_size mod 4 # 0 then bad <+ 6;
if (lig_table_size < 255) V (lig_table_size > 32510) then bad <+ 7;
See also sections 154, 204, 214, 310, 553, and 777.

This code is used in section 1204.

815 METAFONT changes for C PART 1: INTRODUCTION 9

15. Labels are given symbolic names by the following definitions, so that occasional goto statements
will be meaningful. We insert the label ‘exit’ just before the ‘end’ of a procedure in which we have used
the ‘return’ statement defined below; the label ‘restart’ is occasionally used at the very beginning of a
procedure; and the label ‘reswitch’ is occasionally used just prior to a case statement in which some cases
change the conditions and we wish to branch to the newly applicable case. Loops that are set up with the
loop construction defined below are commonly exited by going to ‘done’ or to ‘found’ or to ‘not_found’, and
they are sometimes repeated by going to ‘continue’. If two or more parts of a subroutine start differently
but end up the same, the shared code may be gathered together at ‘common_ending’.

Incidentally, this program never declares a label that isn’t actually used, because some fussy Pascal
compilers will complain about redundant labels.

define exit = 10 {go here to leave a procedure }

define restart =20 {go here to start a procedure again }

define reswitch =21 {go here to start a case statement again }

define continue =22 {go here to resume a loop }

define done =30 {go here to exit a loop }

define donel =31 {like done, when there is more than one loop }

define done2 =32 {for exiting the second loop in a long block }

define doned = 33 {for exiting the third loop in a very long block }

define done4 =34 {for exiting the fourth loop in an extremely long block }
define done5 =35 {for exiting the fifth loop in an immense block }

define done6 =36 {for exiting the sixth loop in a block }

define found =40 {go here when you’ve found it }

define found! =41 {like found, when there’s more than one per routine }
define found2 =42 {like found, when there’s more than two per routine }
define not_found =45 {go here when you’ve found nothing }

define common_ending = 50 {go here when you want to merge with another branch }

16. Here are some macros for common programming idioms.

define negate(#) = # < —# { change the sign of a variable }

define double(#) =# < #+# {multiply a variable by two }

define loop = while true do {repeat over and over until a goto happens }
format loop = zclause {WEB’s xclause acts like ‘while true do’ }

define do_nothing = {empty statement }

define return = goto exit {terminate a procedure call }

format return = nil {WEB will henceforth say return instead of return }

10 PART 2: THE CHARACTER SET METAFONT changes for C 817

17. The character set. In order to make METAFONT readily portable to a wide variety of computers,
all of its input text is converted to an internal eight-bit code that includes standard ASCII, the “American
Standard Code for Information Interchange.” This conversion is done immediately when each character is
read in. Conversely, characters are converted from ASCII to the user’s external representation just before
they are output to a text file.

Such an internal code is relevant to users of METAFONT only with respect to the char and ASCII
operations, and the comparison of strings.

18. Characters of text that have been converted to METAFONT’s internal form are said to be of type
ASCII_code, which is a subrange of the integers.

(Types in the outer block 18) =
ASCII_code =0 ..255; {eight-bit numbers }
See also sections 24, 37, 101, 105, 106, 156, 186, 565, 571, 627, and 1151.

This code is used in section 4.

19. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common,
so it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital
and small letters in a convenient way, especially in a program for font design; so the present specification of
METAFONT has been written under the assumption that the Pascal compiler and run-time system permit the
use of text files with more than 64 distinguishable characters. More precisely, we assume that the character
set contains at least the letters and symbols associated with ASCII codes 40 through “176; all of these
characters are now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name tezt_char to stand for the data type of
the characters that are converted to and from ASCII_code when they are input and output. We shall also
assume that text_char consists of the elements chr(first_text_char) through chr(last_text_char), inclusive.
The following definitions should be adjusted if necessary.

define texrt_char = ASCII_code {the data type of characters in text files }

define first_text_char =0 {ordinal number of the smallest element of text_char }

define last_text_char = 255 {ordinal number of the largest element of text_char }

(Local variables for initialization 19) =
i: integer;
See also section 130.

This code is used in section 4.

20. The METAFONT processor converts between ASCII code and the user’s external character set by means
of arrays zord and xzchr that are analogous to Pascal’s ord and chr functions.

(Global variables 13) +=

zord: array [text_char] of ASCII code; {specifies conversion of input characters }

xchr: array [ASCII_code] of text_char; {specifies conversion of output characters }

§21 METAFONT changes for C PART 2: THE CHARACTER SET 11

21. Since we are assuming that our Pascal system is able to read and write the visible characters of
standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize the standard part of the zchr array properly, without needing any system-dependent
changes. On the other hand, it is possible to implement METAFONT with less complete character sets, and
in such cases it will be necessary to change something here.

(Set initial values of key variables 21> =

xchr[40] <= “u”; xchr[41] + i xchr[42] « "‘; xchr[48] <= “#7; zchr[’{4] + “$;
zchr[45) < “h7; xchr[46] <+ &’; zchr[47]) < =777

zchr['50] <+ ~ (75 xzchr[51] + ") 75 xchr[52] + “*7; mchr[’55’] — T+ mehr[54] 7,7
xchr[’55] <= “=7; xchr[’56] « ~.7; xchr[57) «+ /7

xzchr[’60] <— “07; zchr[61] « 1 i xchr[62] < "27; xchr[63] < "37; zchr[64] «+ "47;
xchr['65] <— "57; xchr[66] < "67; xchr[67] « 77,

xchr[10] <= "87; wchr["71] <= "97; xchr[72] <= ~:7; xchr[13] "5 xchr[74] < <7
xchr|75] <+ “=7; xchr[16] + ">7; xchr[77]) + "77;

xzchr[’100] <+ “@7; xzchr['101] + A" xchr[102] < “B"; xchr['103] < "C~; xzchr['104] + D~;
xzchr[’105] < "E”; xchr[’106] < "F~; xzchr[107] + "G~;

xchr[’110] <— "H"; xchr['111] + I’; xchr[112]) <= “J7; wchr['113] < "K~; zchr['114] + "L~;
xchr['115] < M7 xchr[l]é’]e ; xchr[’117] <+ "07;

xchr[120] <= "P7; xchr['121] < "Q7; xchr[’122] < "R"; xchr['123] < "87; xchr|['124] + "T~;
zchr[’125] «+ U7 mchr[]26]<— Y xchr[127) + W

xchr['130] <= "X~ xchr['131] + Y75 xchr[182] < "Z7; xchr['133] < “[; zchr['134] + "\~;
xchr['135] <+ “17; xchr[’136] + ~~7; xchr[137] «+ ~_7;

xchr[140] < ~~ 75 xchr['141] + "a”; zchr[142] < "b"; xchr['148]) < “c”; zchr['144] + 47
xchr['145] < “e7; xchr['146] < "£7; xzchr['147]) <+ "g~;

xzchr['150] <= “h”; zchr['151] + "i7; xchr[152] + “j7; xchr['153] + "k~; zchr['154] + "17;
xzchr[’155] < "m”; zchr[’156] + "n”; xchr[157] + “o7;

xchr[’160] <— "p~; xchr['161] + "q"; xchr[162] < "t~ xchr['163] < "s~; zchr['164] + "t~;
xchr[’165] <— “u”; xchr[’166] < "v7; xchr[167] < "w’;

xchr['170] <= “x7; xchr['171] + y 5 xchr['172] < “z75 xchr[173] < {7 wehr['174] < 17
xchr[175) <= "} 75 xchr['176] < "~

See also sections 22, 23, 69, 72, 75, 92, 98, 131, 138, 179, 191, 199, 202, 231, 251, 396, 428, 449, 456, 462, 570, 573,
753, 797, 822, 1078, 1085, 1097, 1150, 1153, 1184, and 1215.

This code is used in section 4.

593, 739,

22. The ASCII code is “standard” only to a certain extent, since many computer installations have found
it advantageous to have ready access to more than 94 printing characters. If METAFONT is being used on
a garden-variety Pascal for which only standard ASCII codes will appear in the input and output files, it
doesn’t really matter what codes are specified in zchr[0 .. "37], but the safest policy is to blank everything
out by using the code shown below.

However, other settings of zchr will make METAFONT more friendly on computers that have an extended
character set, so that users can type things like ‘#’ instead of ‘<>’. People with extended character sets can
assign codes arbitrarily, giving an zchr equivalent to whatever characters the users of METAFONT are allowed
to have in their input files. Appropriate changes to METAFONT’s char_class table should then be made.
(Unlike TEX, each installation of METAFONT has a fixed assignment of category codes, called the char_class.)
Such changes make portability of programs more difficult, so they should be introduced cautiously if at all.

define tab = 11 { ASCII horizontal tab }
define form_feed = 14 { ASCII form feed }

(Set initial values of key variables 21) +=
{ Initialize zchr to the identity mapping. }
for i <~ 0to 37 do zchr(i] < i;
for i « 177 to 377 do xzchr[i] +

12 PART 2: THE CHARACTER SET METAFONT changes for C 623

23. The following system-independent code makes the zord array contain a suitable inverse to the infor-
mation in xzchr. Note that if zchr[i] = xchr[j] where i < j < “177, the value of zord[zchr[i]] will turn out
to be j or more; hence, standard ASCII code numbers will be used instead of codes below 40 in case there
is a coincidence.

(Set initial values of key variables 21) +=
for i < first_text_char to last_text_char do zord|chr(i)] + "177;
for i < 200 to 377 do word[zchrli]] < i
for i + 0to 176 do zord[zchr[i]] + i; {Set zprn for printable ASCII, unless eight_bit_p is set. }
for i + 0 to 255 do aprn[i] + (eight-bit_p V ((i > "L") A (i < """))); { The idea for this dynamic
translation comes from the patch by Libor Skarvada <libor@informatics.muni.cz> and Petr
Sojka <sojka@informatics.muni.cz>. I didn’t use any of the actual code, though, preferring a
more general approach. }
{ This updates the zchr, zord, and xprn arrays from the provided translate_filename. See the
function definition in texmfmp.c for more comments. }
if translate_filename then read_tcx_file;

624 METAFONT changes for C PART 3: INPUT AND OUTPUT 13

24. Input and output. The bane of portability is the fact that different operating systems treat input
and output quite differently, perhaps because computer scientists have not given sufficient attention to this
problem. People have felt somehow that input and output are not part of “real” programming. Well, it is
true that some kinds of programming are more fun than others. With existing input/output conventions
being so diverse and so messy, the only sources of joy in such parts of the code are the rare occasions when
one can find a way to make the program a little less bad than it might have been. We have two choices,
either to attack I/O now and get it over with, or to postpone I/O until near the end. Neither prospect is
very attractive, so let’s get it over with.

The basic operations we need to do are (1) inputting and outputting of text, to or from a file or the user’s
terminal; (2) inputting and outputting of eight-bit bytes, to or from a file; (3) instructing the operating system
to initiate (“open”) or to terminate (“close”) input or output from a specified file; (4) testing whether the
end of an input file has been reached; (5) display of bits on the user’s screen. The bit-display operation will
be discussed in a later section; we shall deal here only with more traditional kinds of I/O.

METAFONT needs to deal with two kinds of files. We shall use the term alpha_file for a file that contains
textual data, and the term byte_file for a file that contains eight-bit binary information. These two types
turn out to be the same on many computers, but sometimes there is a significant distinction, so we shall
be careful to distinguish between them. Standard protocols for transferring such files from computer to
computer, via high-speed networks, are now becoming available to more and more communities of users.

The program actually makes use also of a third kind of file, called a word_file, when dumping and reloading
base information for its own initialization. We shall define a word file later; but it will be possible for us to
specify simple operations on word files before they are defined.

(Types in the outer block 18) +=
eight_bits = 0 .. 255; { unsigned one-byte quantity }
alpha_file = packed file of text_char; {files that contain textual data }
byte_file = packed file of eight_bits; {files that contain binary data }

25. Most of what we need to do with respect to input and output can be handled by the I/O facilities
that are standard in Pascal, i.e., the routines called get, put, eof, and so on. But standard Pascal does
not allow file variables to be associated with file names that are determined at run time, so it cannot be
used to implement METAFONT; some sort of extension to Pascal’s ordinary reset and rewrite is crucial for
our purposes. We shall assume that name_of_file is a variable of an appropriate type such that the Pascal
run-time system being used to implement METAFONT can open a file whose external name is specified by
name_of_file.
(Global variables 13) +=
name_of_file: Ttext_char;
name_length: 0 .. file_name_size;

{ this many characters are actually relevant in name_of_file (the rest are blank) }

26. All of the file opening functions are defined in C.
27. And all the file closing routines as well.

28. Binary input and output are done with Pascal’s ordinary get and put procedures, so we don’t have to
make any other special arrangements for binary I/0. Text output is also easy to do with standard Pascal
routines. The treatment of text input is more difficult, however, because of the necessary translation to
ASCII_code values. METAFONT’s conventions should be efficient, and they should blend nicely with the
user’s operating environment.

14 PART 3: INPUT AND OUTPUT METAFONT changes for C §29

29. Input from text files is read one line at a time, using a routine called input_In. This function is defined
in terms of global variables called buffer, first, and last that will be described in detail later; for now, it
suffices for us to know that buffer is an array of ASCII_code values, and that first and last are indices into
this array representing the beginning and ending of a line of text.

(Global variables 13) +=

buffer: 1ASCII _code; {lines of characters being read }
first: 0 .. buf size; {the first unused position in buffer }
last: 0 .. buf-size; {end of the line just input to buffer }
maz-buf_stack: 0 .. buf-size; {largest index used in buffer }

30. The input_In function brings the next line of input from the specified field into available positions of
the buffer array and returns the value true, unless the file has already been entirely read, in which case it
returns false and sets last < first. In general, the ASCII_code numbers that represent the next line of the
file are input into buffer[first], buffer|first + 1], ..., buffer[last — 1]; and the global variable last is set equal
to first plus the length of the line. Trailing blanks are removed from the line; thus, either last = first (in
which case the line was entirely blank) or buffer[last — 1] # ",".

An overflow error is given, however, if the normal actions of input_In would make last > buf_size; this is
done so that other parts of METAFONT can safely look at the contents of buffer[last + 1] without overstepping
the bounds of the buffer array. Upon entry to input_ln, the condition first < buf_size will always hold, so
that there is always room for an “empty” line.

The variable maz_buf_stack, which is used to keep track of how large the buf size parameter must be to
accommodate the present job, is also kept up to date by input_in.

If the bypass_eoln parameter is true, input_ln will do a get before looking at the first character of the line;
this skips over an eoln that was in f1. The procedure does not do a get when it reaches the end of the line;
therefore it can be used to acquire input from the user’s terminal as well as from ordinary text files.

We define input_in in C, for efficiency. Nevertheless we quote the module ‘Report overflow of the input
buffer, and abort’ here in order to make WEAVE happy.

@{(Report overflow of the input buffer, and abort 34)@}

31. The user’s terminal acts essentially like other files of text, except that it is used both for input and
for output. When the terminal is considered an input file, the file variable is called term_in, and when it is
considered an output file the file variable is term_out.

define term_in = stdin {the terminal as an input file }
define term_out = stdout {the terminal as an output file }

32. Here is how to open the terminal files. ¢_open_out does nothing. t_open_in, on the other hand, does
the work of “rescanning,” or getting any command line arguments the user has provided. It’s defined in C.

define t_open_out = {output already open for text output }

33. Sometimes it is necessary to synchronize the input/output mixture that happens on the user’s terminal,
and three system-dependent procedures are used for this purpose. The first of these, update_terminal, is
called when we want to make sure that everything we have output to the terminal so far has actually left the
computer’s internal buffers and been sent. The second, clear_terminal, is called when we wish to cancel any
input that the user may have typed ahead (since we are about to issue an unexpected error message). The
third, wake_up_terminal, is supposed to revive the terminal if the user has disabled it by some instruction
to the operating system. The following macros show how these operations can be specified with UNIX.
update_terminal does an fflush. clear_terminal is redefined to do nothing, since the user should control the
terminal.

define update_terminal = fflush(term_out)
define clear_terminal = do_nothing
define wake_up_terminal = do_nothing { cancel the user’s cancellation of output }

834 METAFONT changes for C PART 3: INPUT AND OUTPUT 15

34. We need a special routine to read the first line of METAFONT input from the user’s terminal. This
line is different because it is read before we have opened the transcript file; there is sort of a “chicken and
egg” problem here. If the user types ‘input cmr10’ on the first line, or if some macro invoked by that line
does such an input, the transcript file will be named ‘cmr10.1log’; but if no input commands are performed
during the first line of terminal input, the transcript file will acquire its default name ‘mfput.log’. (The
transcript file will not contain error messages generated by the first line before the first input command.)

The first line is even more special if we are lucky enough to have an operating system that treats METR-
FONT differently from a run-of-the-mill Pascal object program. It’s nice to let the user start running a
METAFONT job by typing a command line like ‘MF cmr10’; in such a case, METAFONT will operate as if the
first line of input were ‘cmr10’, i.e., the first line will consist of the remainder of the command line, after the
part that invoked METAFONT.

The first line is special also because it may be read before METAFONT has input a base file. In such cases,
normal error messages cannot yet be given. The following code uses concepts that will be explained later.
(If the Pascal compiler does not support non-local goto, the statement ‘goto final_end’ should be replaced
by something that quietly terminates the program.)

(Report overflow of the input buffer, and abort 34) =
if base_ident = 0 then
begin write_In(term_out, "Buffer size exceeded! "); goto final_end;
end
else begin cur_input.loc_field + first; cur_input.limit_field < last — 1;
overflow ("buffer_size", buf_size);
end

This code is used in section 30.

35. Different systems have different ways to get started. But regardless of what conventions are adopted,
the routine that initializes the terminal should satisfy the following specifications:

1) It should open file term_in for input from the terminal. (The file term_out will already be open for
output to the terminal.)

2) If the user has given a command line, this line should be considered the first line of terminal input.
Otherwise the user should be prompted with ‘**’, and the first line of input should be whatever is
typed in response.

3) The first line of input, which might or might not be a command line, should appear in locations first
to last — 1 of the buffer array.

4) The global variable loc should be set so that the character to be read next by METAFONT is in
buffer[loc]. This character should not be blank, and we should have loc < last.

(It may be necessary to prompt the user several times before a non-blank line comes in. The prompt is ‘**’
instead of the later ‘*’ because the meaning is slightly different: ‘input’ need not be typed immediately
after ‘**’.)

define loc = cur_input.loc_field {location of first unread character in buffer }

16 PART 3: INPUT AND OUTPUT METAFONT changes for C 836
36. The following program does the required initialization. Iff anything has been specified on the command
line, then t_open_in will return with last > first.
function init_terminal: boolean; {gets the terminal input started }
label ezit;
begin t_open_in;
if last > first then
begin loc <+ first;
while (loc < last) A (buffer[loc] = “1,") do incr(loc);
if loc < last then
begin init_terminal < true; goto exit;
end;
end;
loop begin wake_up_terminal; write(term_out, “**"); update_terminal;
if —input_ln(term_in, true) then
begin {this shouldn’t happen }
write_In (term_out); write_In(term_out, ~! End of_ file on the terminal..._why?");
init_terminal < false; return;
end;
loc + first;
while (loc < last) A (buffer[loc] = "u") do incr(loc);
if loc < last then
begin init_terminal + true; return; {return unless the line was all blank }
end;
write_ln(term_out, "Please type the name of jyour input, file. ");
end;
erit: end;

837 METAFONT changes for C PART 4: STRING HANDLING 17

37. String handling. Symbolic token names and diagnostic messages are variable-length strings of
eight-bit characters. Since Pascal does not have a well-developed string mechanism, METAFONT does all of
its string processing by homegrown methods.

Elaborate facilities for dynamic strings are not needed, so all of the necessary operations can be handled
with a simple data structure. The array str_pool contains all of the (eight-bit) ASCII codes in all of the strings,
and the array str_start contains indices of the starting points of each string. Strings are referred to by integer
numbers, so that string number s comprises the characters str_pool[j] for str_start[s] < j < str_start[s + 1].
Additional integer variables pool_ptr and str_ptr indicate the number of entries used so far in str_pool and
str_start, respectively; locations str_pool [pool_ptr| and str_start[str_ptr] are ready for the next string to be
allocated.

String numbers 0 to 255 are reserved for strings that correspond to single ASCII characters. This is in
accordance with the conventions of WEB, which converts single-character strings into the ASCII code number
of the single character involved, while it converts other strings into integers and builds a string pool file.
Thus, when the string constant "." appears in the program below, WEB converts it into the integer 46,
which is the ASCII code for a period, while WEB will convert a string like "hello" into some integer greater
than 255. String number 46 will presumably be the single character ‘.”; but some ASCII codes have no
standard visible representation, and METAFONT may need to be able to print an arbitrary ASCII character,
so the first 256 strings are used to specify exactly what should be printed for each of the 256 possibilities.

Elements of the str_pool array must be ASCII codes that can actually be printed; i.e., they must have an
xchr equivalent in the local character set. (This restriction applies only to preloaded strings, not to those
generated dynamically by the user.)

Some Pascal compilers won’t pack integers into a single byte unless the integers lie in the range —128 .. 127.
To accommodate such systems we access the string pool only via macros that can easily be redefined.

define si(#) =# {convert from ASCII code to packed-ASCII_code }
define so(#) =# {convert from packed_ASCII_code to ASCII_code }

(Types in the outer block 18) +=
pool_pointer =0 .. pool_size; {for variables that point into str_pool }
stronumber = 0 .. maz_strings; {for variables that point into str_start }
packed_ASCII_code =0 .. 255; {elements of str_pool array }

38. (Global variables 13) +=

str_pool: packed array [pool_pointer] of packed_ASCII_code; {the characters}
str_start: array [str-number] of pool_pointer; {the starting pointers }
pool_ptr: pool_pointer; {first unused position in str_pool }

str_ptr: str_number; {number of the current string being created }
init_pool_ptr: pool_pointer; {the starting value of pool_ptr }

init_str_ptr: str_number; {the starting value of str_ptr }

maz_pool_ptr: pool_pointer; {the maximum so far of pool_ptr }

maz_str_ptr: str_number; {the maximum so far of str_ptr }

39. Several of the elementary string operations are performed using WEB macros instead of Pascal pro-
cedures, because many of the operations are done quite frequently and we want to avoid the overhead of
procedure calls. For example, here is a simple macro that computes the length of a string.

define length (#) = (str_start[# + 1] — str_start[#]) {the number of characters in string number # }

40. The length of the current string is called cur_length:
define cur_length = (pool_ptr — str_start[str_ptr])

18 PART 4: STRING HANDLING METAFONT changes for C 841

41. Strings are created by appending character codes to str_pool. The append_char macro, defined here,
does not check to see if the value of pool_ptr has gotten too high; this test is supposed to be made before
append_char is used.

To test if there is room to append ! more characters to str_pool, we shall write str_room (l), which aborts
METAFONT and gives an apologetic error message if there isn’t enough room.

define append_char(#) = {put ASCII code # at the end of str_pool }
begin str_pool [pool_ptr] < si(#); incr(pool_ptr);
end
define str_room(#) = {make sure that the pool hasn’t overflowed }
begin if pool_ptr + # > max_pool_ptr then
begin if pool_ptr 4+ # > pool_size then overflow("pool size", pool_size — init_pool_ptr);
maz_pool_ptr < pool_ptr + #;
end;
end

42. METAFONT’s string expressions are implemented in a brute-force way: Every new string or substring
that is needed is simply copied into the string pool.

Such a scheme can be justified because string expressions aren’t a big deal in METAFONT applications;
strings rarely need to be saved from one statement to the next. But it would waste space needlessly if we
didn’t try to reclaim the space of strings that are going to be used only once.

Therefore a simple reference count mechanism is provided: If there are no references to a certain string
from elsewhere in the program, and if there are no references to any strings created subsequent to it, then
the string space will be reclaimed.

The number of references to string number s will be str_ref [s]. The special value str_ref [s] = max_str_ref =
127 is used to denote an unknown positive number of references; such strings will never be recycled. If a
string is ever referred to more than 126 times, simultaneously, we put it in this category. Hence a single byte
suffices to store each str_ref.

define maz_str_ref = 127 { “infinite” number of references }
define add_str_ref (#) =
begin if str_ref [#] < max_str_ref then incr(str_ref [#]);
end

(Global variables 13) +=
str_ref: array [str_number] of 0 .. maz_str_ref;

43. Here’s what we do when a string reference disappears:

define delete_str_ref (#) =
begin if str_ref [#] < max_str_ref then
if str_ref [#] > 1 then decr(str_ref [#]) else flush_string (#);
end

{Declare the procedure called flush_string 43) =
procedure flush_string (s : str_number);
begin if s < str_ptr — 1 then str_ref[s] < 0
else repeat decr(str_ptr);
until str_ref [strptr — 1] # 0;
pool_ptr « str_start [str_ptr];
end;

This code is used in section 73.

844 METAFONT changes for C PART 4: STRING HANDLING 19

44. Once a sequence of characters has been appended to str_pool, it officially becomes a string when the
function make_string is called. This function returns the identification number of the new string as its value.

function make_string: str_number; {current string enters the pool }
begin if str_ptr = maz_str_ptr then
begin if str_ptr = maz_strings then overflow ("number of strings", maz_strings — init_str_ptr);
incr (maz_str_ptr);
end;
str_ref [str_ptr] < 1; incr(str_ptr); str_start[str_ptr] < pool_ptr; make_string < str_ptr — 1;
end;

45. The following subroutine compares string s with another string of the same length that appears in
buffer starting at position k; the result is true if and only if the strings are equal.

function str_eq_buf (s : str_number; k : integer): boolean; {test equality of strings }
label not_found; {loop exit }
var j: pool_pointer; {running index }
result: boolean; {result of comparison }
begin j « str_start|[s];
while j < str_start[s + 1] do
begin if so(str_pool[j]) # buffer[k] then
begin result < false; goto not_found;
end;
incr(j); incr(k);
end;
result < true;
not_found: str_eq_buf < result;
end;

46. Here is a similar routine, but it compares two strings in the string pool, and it does not assume that
they have the same length. If the first string is lexicographically greater than, less than, or equal to the
second, the result is respectively positive, negative, or zero.

function str_vs_str(s,t : str-number): integer; {test equality of strings }
label exit;
var j, k: pool_pointer; {running indices }
Is, It: integer; {lengths }
I: integer; {length remaining to test }
begin ls < length(s); It < length(t);
if [s < It then [< Is else | <+ It;
J « str_start[s]; k < str_start|t];
while [> 0 do
begin if str_pool[j] # str_pool[k] then
begin str_vs_str < str_pool[j] — str_pool [k]; return;
end;
incr(4); incr(k); decr(l);
end;
str_vs_str < ls — It;
exit: end;

20 PART 4: STRING HANDLING METAFONT changes for C 847

47. The initial values of str_pool, str_start, pool_ptr, and str_ptr are computed by the INIMF program,
based in part on the information that WEB has output while processing METAFONT.

init function get_strings_started: boolean;
{ initializes the string pool, but returns false if something goes wrong }
label done, exit;
var k,l: 0..255; {small indices or counters }
g: strnumber; {garbage }
begin pool_ptr « 0; str_ptr < 0; maz_pool_ptr < 0; maz_str_ptr < 0; str_start[0] + 0;
(Make the first 256 strings 48);
(Read the other strings from the MF.POOL file and return true, or give an error message and return
false 51);
erit: end;
tini

48. define app_lc_hex(#) =1+ #;
if [< 10 then append_char(l + "0") else append_char(l — 10 + "a")

(Make the first 256 strings 48) =
for k < 0 to 255 do

begin if ({ Character k cannot be printed 49)) then
begin append_char("~"); append_char(""");
if kK < "100 then append_char(k + 100)
else if k < 200 then append_char(k — "100)

else begin app_lc_hex (k div 16); app_lc_hez (k mod 16);
end;

end

else append_char (k);

g < make_string; str_ref [g] < maz_str_ref;

end

This code is used in section 47.

49. The first 128 strings will contain 95 standard ASCII characters, and the other 33 characters will be
printed in three-symbol form like ‘~~A’ unless a system-dependent change is made here. Installations that
have an extended character set, where for example zchr['32] = “#°, would like string ‘82 to be printed
as the single character "32 instead of the three characters 136, 136, 132 (~~Z). On the other hand,
even people with an extended character set will want to represent string 15 by ~~M, since ‘15 is ASCII’s
“carriage return” code; the idea is to produce visible strings instead of tabs or line-feeds or carriage-returns
or bell-rings or characters that are treated anomalously in text files.

Unprintable characters of codes 128255 are, similarly, rendered ~~80—""ff.

The boolean expression defined here should be true unless METAFONT internal code number &k corresponds
to a non-troublesome visible symbol in the local character set. If character k cannot be printed, and k < 200,
then character k+ 100 or k— 100 must be printable; moreover, ASCII codes [60 .. 71,1536, 141 .. "146]
must be printable.

{ Character k cannot be printed 49) =
(k < "LJ") \Vi (k > ||~||)

This code is used in section 48.

850 METAFONT changes for C PART 4: STRING HANDLING 21

50. When the WEB system program called TANGLE processes the MF.WEB description that you are now
reading, it outputs the Pascal program MF.PAS and also a string pool file called MF.POOL. The INIMF
program reads the latter file, where each string appears as a two-digit decimal length followed by the string
itself, and the information is recorded in METAFONT’s string memory.

(Global variables 13) +=
init pool_file: alpha_file; {the string-pool file output by TANGLE }
tini

51. (Read the other strings from the MF.POOL file and return ¢rue, or give an error message and return
false 51) =

g < loadpoolstrings ((pool_size — string_vacancies));

if ¢ = 0 then
begin wake_up_terminal; write_In(term_out, ~' You have to_ increase POOLSIZE.);
get_strings_started < false; return;
end;

get_strings_started < true;

This code is used in section 47.
52. Empty module

53. Empty module

22 PART 5: ON-LINE AND OFF-LINE PRINTING METAFONT changes for C 854

54. On-line and off-line printing. Messages that are sent to a user’s terminal and to the transcript-
log file are produced by several ‘print’ procedures. These procedures will direct their output to a variety of
places, based on the setting of the global variable selector, which has the following possible values:

term_and_log, the normal setting, prints on the terminal and on the transcript file.

log_only, prints only on the transcript file.

term_only, prints only on the terminal.

no_print, doesn’t print at all. This is used only in rare cases before the transcript file is open.

pseudo, puts output into a cyclic buffer that is used by the show_context routine; when we get to that routine
we shall discuss the reasoning behind this curious mode.

new_string, appends the output to the current string in the string pool.

The symbolic names ‘term_and_log’, etc., have been assigned numeric codes that satisfy the convenient
relations no_print + 1 = term_only, no_print 4+ 2 = log_only, term_only + 2 = log_only + 1 = term_and_log.

Three additional global variables, tally and term_offset and file_offset, record the number of characters
that have been printed since they were most recently cleared to zero. We use tally to record the length of
(possibly very long) stretches of printing; term_offset and file_offset, on the other hand, keep track of how
many characters have appeared so far on the current line that has been output to the terminal or to the
transcript file, respectively.

define no_print =0 { selector setting that makes data disappear }
define term_only =1 {printing is destined for the terminal only }
define log_only =2 {printing is destined for the transcript file only }
define term_and_log =3 {normal selector setting }

define pseudo = 4 {special selector setting for show_context }
define new_string =5 { printing is deflected to the string pool }
define maz_selector =5 { highest selector setting }

{ Global variables 13) +=

log_file: alpha_file; {transcript of METAFONT session }

selector: 0 .. max_selector; {where to print a message }

dig: array [0..22] of 0..15; {digits in a number being output }

tally: integer; {the number of characters recently printed }

term_offset: 0 .. max_print_line; {the number of characters on the current terminal line }
file_offset: 0 .. maz_print_line; {the number of characters on the current file line }
trick_buf: array [0 .. ssup_error_line] of ASCII_code; { circular buffer for pseudoprinting }
trick_count: integer; {threshold for pseudoprinting, explained later }

first_count: integer; {another variable for pseudoprinting }

55. (Initialize the output routines 55) =
selector < term_only; tally < 0; term_offset < 0; file_offset < 0;
See also sections 61, 783, and 792.

This code is used in section 1204.

56. Macro abbreviations for output to the terminal and to the log file are defined here for convenience.
Some systems need special conventions for terminal output, and it is possible to adhere to those conventions
by changing wterm, wterm_In, and wterm_cr here.

define wterm (#) = write(term_out, #)
define wterm_in(#) = write_ln(term_out , #)
define wterm_cr = write_ln(term_out)
define wlog (#) = write(log_file, #)

define wlog_in(#) = write_ln (log_file, #)
define wlog_cr = write_In(log_file)

857 METAFONT changes for C PART 5: ON-LINE AND OFF-LINE PRINTING 23

57. To end a line of text output, we call print_in.

(Basic printing procedures 57) =
procedure print_ln; { prints an end-of-line }
begin case selector of
term_and_log: begin wterm_cr; wlog_cr; term_offset < 0; file_offset + 0;

end;

log_only: begin wlog_cr; file_offset < 0;
end;

term_only: begin wterm_cr; term_offset < 0;
end;

no_print, pseudo, new_string: do_nothing;
end; {there are no other cases }
end; {note that tally is not affected }
See also sections 58, 59, 60, 62, 63, 64, 103, 104, 187, 195, 197, and 773.

This code is used in section 4.

58. The print_char procedure sends one character to the desired destination, using the zchr array to map
it into an external character compatible with input_ln. All printing comes through print_In or print_char.

(Basic printing procedures 57) +=
procedure print_char(s: ASCII_code); { prints a single character }
begin case selector of
term_and_log: begin wterm (zchr(s]); wlog(xzchr(s]); incr(term_offset); incr(file-offset);
if term_offset = max_print_line then
begin wterm_cr; term_offset < 0;
end;
if file_offset = max_print_line then
begin wlog_cr; file_offset < 0;
end;
end;
log_only: begin wlog(xzchr|s]); incr(file_offset);
if file_offset = maz_print_line then print_ln;
end;
term_only: begin wterm (xchr|s]); incr(term-offset);
if term_offset = max_print_line then print_in;
end;
no_print: do_nothing;
pseudo: if tally < trick_count then trick_buf [tally mod error_line] < s;
new_string: begin if pool_ptr < pool_size then append_char(s);
end; {we drop characters if the string space is full }
end; {there are no other cases }
incr (tally);
end;

24 PART 5: ON-LINE AND OFF-LINE PRINTING METAFONT changes for C 859

59. An entire string is output by calling print. Note that if we are outputting the single standard ASCII
character c, we could call print("c"), since "c" = 99 is the number of a single-character string, as explained
above. But print_char("c") is quicker, so METAFONT goes directly to the print_char routine when it knows
that this is safe. (The present implementation assumes that it is always safe to print a visible ASCII
character.)

(Basic printing procedures 57) +=
procedure print(s : integer); {prints string s}
var j: pool_pointer; {current character code position }
begin if (s < 0)V (s > str_ptr) then s+ "???"; {this can’t happen }
if (s < 256) A ((selector > pseudo) V zprn|[s]) then print_char(s)
else begin j < str_start[s];
while j < str_start[s + 1] do
begin print_char(so(str_pool[j])); incr(j);
end;
end;
end;
60. Sometimes it’s necessary to print a string whose characters may not be visible ASCII codes. In that
case slow_print is used.

(Basic printing procedures 57) +=
procedure slow_print (s : integer); { prints string s }
var j: pool_pointer; {current character code position }
begin if (s < 0)V (s > str_ptr) then s+ "???"; {this can’t happen }
if (s < 256) A ((selector > pseudo) V zprn[s]) then print_char(s)
else begin j + str_start[s];
while j < str_start[s + 1] do
begin print (so(str_pool[j])); incr(j);
end;
end;
end;
61. Here is the very first thing that METAFONT prints: a headline that identifies the version number and
base name. The term_offset variable is temporarily incorrect, but the discrepancy is not serious since we
assume that the banner and base identifier together will occupy at most maz_print_line character positions.

(Initialize the output routines 55) +=

wterm (banner); wterm (version_string);

if base_ident = 0 then wterm_In(|, (preloaded base=", dump_name, ") ")

else begin slow_print (base_ident); print_ln;
end;

if translate_filename then
begin wterm (”(7); fputs(translate_filename, stdout); wterm_ln (") *);
end;

update_terminal;

62. The procedure print_nl is like print, but it makes sure that the string appears at the beginning of a
new line.

(Basic printing procedures 57) +=

procedure print_nl(s: str-number); { prints string s at beginning of line }
begin if ((term_offset > 0) A (odd (selector))) V ((file_offset > 0) A (selector > log_only)) then print_ln;
print(s);
end;

)

563 METAFONT changes for C PART 5: ON-LINE AND OFF-LINE PRINTING 25

63. An array of digits in the range 0 .. 9 is printed by print_the_digs.

(Basic printing procedures 57) +=
procedure print_the_digs (k : eight_bits); {prints dig[k —1]... dig[0] }
begin while £ > 0 do
begin decr(k); print_char("0" + dig[k]);
end;
end;

64. The following procedure, which prints out the decimal representation of a given integer n, has been
written carefully so that it works properly if n = 0 or if (—n) would cause overflow. It does not apply mod or
div to negative arguments, since such operations are not implemented consistently by all Pascal compilers.

(Basic printing procedures 57) +=
procedure print_int(n : integer); {prints an integer in decimal form }
var k: 0..23; {index to current digit; we assume that n < 10?3}
m: integer; {used to negate n in possibly dangerous cases }
begin k£ + 0;
if n < 0 then
begin print_char("-");
if n > —100000000 then negate(n)
else begin m + —1 —n; n < mdiv 10; m + (mmod 10) + 1; k + 1;
if m < 10 then dig[0] < m
else begin dig[0] + 0; incr(n);
end;
end;
end;
repeat dig[k] < n mod 10; n < ndiv 10; incr(k);
until n = 0;
print_the_digs (k);
end;
65. METAFONT also makes use of a trivial procedure to print two digits. The following subroutine is
usually called with a parameter in the range 0 < n < 99.

procedure print_dd(n : integer); {prints two least significant digits }
begin n < abs(n) mod 100; print_char("0" 4 (n div 10)); print_char("0" + (n mod 10));
end;

26 PART 5: ON-LINE AND OFF-LINE PRINTING METAFONT changes for C 866

66. Here is a procedure that asks the user to type a line of input, assuming that the selector setting is
either term_only or term_and_log. The input is placed into locations first through last — 1 of the buffer
array, and echoed on the transcript file if appropriate.
This procedure is never called when interaction < scroll_mode.
define prompt_input (#) =
begin wake_up_terminal; print(#); term_input;
end {prints a string and gets a line of input }
procedure term_input; {gets a line from the terminal }
var k: 0 .. buf_size; {index into buffer }
begin update_terminal; {now the user sees the prompt for sure }
if —input_in(term_in, true) then fatal_error("End of file on the terminall!");
term_offset < 0; {the user’s line ended with (return) }
decr(selector); { prepare to echo the input }
if last # first then
for k « first to last — 1 do print (buffer|k]);
print_In; buffer[last] + "%"; incr(selector); {restore previous status }
end;

867 METAFONT changes for C PART 6: REPORTING ERRORS 27

67. Reporting errors. When something anomalous is detected, METAFONT typically does something

like this:
print_err ("Something anomalous has been detected");

help8 ("This_ is the first line of my offer to help.")
("This_is_ the second line. I m_ trying to")

("explain, the best_ way for you to_proceed.");

error;

A two-line help message would be given using help2, etc.; these informal helps should use simple vocabulary
that complements the words used in the official error message that was printed. (Outside the U.S.A., the
help messages should preferably be translated into the local vernacular. Each line of help is at most 60
characters long, in the present implementation, so that maz_print_line will not be exceeded.)

The print_err procedure supplies a ‘!’ before the official message, and makes sure that the terminal is
awake if a stop is going to occur. The error procedure supplies a ‘.’ after the official message, then it shows
the location of the error; and if interaction = error_stop_mode, it also enters into a dialog with the user,

during which time the help message may be printed.

68. The global variable interaction has four settings, representing increasing amounts of user interaction:

define batch-mode =0 {omits all stops and omits terminal output }
define nonstop-mode =1 {omits all stops }
define scroll_mode =2 {omits error stops }
define error_stop-mode = 3 {stops at every opportunity to interact }
define unspecified_mode =4 {extra value for command-line switch }
define print_err(#) =
begin if interaction = error_stop_mode then wake_up_terminal;
if (file_line_error_style_p A —terminal_input) then
begin print_nl(""); print(full_source_filename_stack[in_open]); print(":"); print_int(line);
print(":u"); print(#);
end
else begin print_nl("!,"); print(#)
end;
end

(Global variables 13) +=
interaction: batch_mode .. error_stop_mode; { current level of interaction }
interaction_option: batch-mode .. unspecified_-mode; {set from command line }

69. (Set initial values of key variables 21) +=
if i