Weekly Homework 3

Michael Mayer
Math 4377: Algebraic Structures

September 12, 2014

Problem 1.

Find all Solutions to the equation $x^{2} \oplus x=[0]$ in \mathbb{Z}_{4}
Proof.
Problem 2.
(1) Prove: If $[a] \in \mathbb{Z}_{n}$ is a unit, then $[a]$ is not a zero divisor.
(2) Prove: If $[b] \in \mathbb{Z}_{n}$ is a zero divisor, then $[b]$ is not a unit.

Proof.

Problem 3.

Show that every nonzero element of \mathbb{Z}_{n} is either a unit or a zero divisor.
Proof.

Problem 4.

Suppose that $[a]$ is a unit in \mathbb{Z}_{n} and $[b]$ is an element of \mathbb{Z}_{n}. Prove that the equation $[a] x=b$ has exactly one solution in \mathbb{Z}_{n}

Proof.

Problem 5.

Suppose that $[a]$ and $[b]$ are both units in \mathbb{Z}_{n}. Show that the product $[a] \cdot[b]$ is also a unit in \mathbb{Z}_{n}. (Note that this confirms closure under multiplication in the group U_{n}).

Proof.

Problem 6.

Which of the following are Groups? Which of the following are not groups, and why?
(1) $G=\{2,4,6,8\}$ in \mathbb{Z}_{10}. Where $a \star b=a b$
(2) $G=\mathbb{Q}^{*}$, where $a \star b=\frac{a}{b}$
(3) $G=\mathbb{Z}$, where $a \star b=a-b$
(4) $G=\left\{2^{x} \mid x \in \mathbb{Q}\right\}$, where $a \star b=a b$

Proof.
Problem 7.
Consider the set $Q=\{ \pm 1, \pm \mathrm{i}, \pm \mathrm{j}, \pm \mathrm{k}\}$ of the complex matrices as follows:

$$
\begin{aligned}
1 & =\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \\
i & =\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \\
j & =\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \\
k & =\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right]
\end{aligned}
$$

Show that Q is a group under matrix multiplication by writing out its multiplicaiton table. (Note: Q is called the quartenion group).

Proof.

