Week 11 Tutorial Solutions

APSC 174 TAs

Week 11

Section 14

Question 1

For each of the following choices for the matrix A, establish whether or not A is invertible in the following two distinct ways:
(i) Check whether or not the column vectors of A are linearly independent.
(ii) Compute the determinant $\operatorname{det}(A)$ of A to see whether or not it is non-zero.
(a) - James

$$
A=\left(\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right)
$$

Solution:
(i) First we check the linear independence of the columns: Let $\alpha, \beta \in \mathbb{R}$ and suppose that

$$
\begin{aligned}
& \\
& \\
& \Longleftrightarrow \quad \alpha \cdot\binom{-1}{2}+\beta \cdot\binom{2}{1}=\binom{0}{0} \\
& \binom{-\alpha+2 \beta}{2 \alpha+\beta}=\binom{0}{0} \\
& \Longleftrightarrow \quad\left\{\begin{array}{c}
-\alpha+2 \beta=0 \\
2 \alpha+\beta=0
\end{array}\right. \\
& \Longrightarrow \quad \alpha=2 \beta \text { and } \alpha=-\frac{1}{2} \beta \\
& \Longrightarrow \quad \alpha=\beta=0
\end{aligned}
$$

Thus the columns of A are LI.
(ii) As for the determinant, we will use the following basic formula:

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

Hence, for $\operatorname{det} A$ we get

$$
\operatorname{det} A=(-1)(1)-(2)(2)=-5 \neq 0
$$

so we may conclude that the columns of A are LI.
(n) - Jacob

$$
A=\left(\begin{array}{lll}
1 & 0 & 3 \\
2 & 1 & 2 \\
3 & 3 & 3
\end{array}\right)
$$

Solution:
(i) This can easily be checked using material taught in previous weeks to check linear independence. The final result is that the column vectors of A are linearly independent and hence A is invertible.
(ii) We want to choose a row to perform our determinant formula to that has the most zero entries. This is the first row.

$$
\begin{aligned}
\operatorname{det}\left(\left(\begin{array}{lll}
1 & 0 & 3 \\
2 & 1 & 2 \\
3 & 3 & 3
\end{array}\right)\right) & =1 \operatorname{det}\left(\left(\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right)\right) \\
& =1(3 \cdot 1-2 \cdot 3)+0+3(2 \cdot 3-3 \cdot 1) \\
& =6 .
\end{aligned}
$$

(o) - Graeme

$$
A=\left(\begin{array}{lll}
3 & 2 & 1 \\
2 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Solution:
(i) Left as exercise.
(ii) We apply Laplace's expansion formula to the second column:

$$
\begin{aligned}
\operatorname{det}\left(\left(\begin{array}{lll}
3 & 2 & 1 \\
2 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)\right) & =-2 \operatorname{det}\left(\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right)\right)+0+0 \\
& =-2(2 \cdot 1-1 \cdot 0) \\
& =-4
\end{aligned}
$$

(x) - Manfred

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
1 & 2 & -3 & 0 \\
1 & 5 & -7 & 2
\end{array}\right)
$$

Solution:
(i) Linear Independence:

Let $v_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right), v_{2}=\left(\begin{array}{c}0 \\ -1 \\ 2 \\ 5\end{array}\right), v_{3}=\left(\begin{array}{c}0 \\ 0 \\ -3 \\ -7\end{array}\right), v_{4}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 2\end{array}\right)$
We want to show if $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}+\alpha_{4} v_{4}=\mathbf{0}$
$\Longrightarrow \alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$.
Solving each variable and using back-substitution, we obtain $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$
Therefore, $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ are linearly independent.
Therefore, A is invertible.
(ii) Computing Determinant:

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
1 & 2 & -3 & 0 \\
1 & 5 & -7 & 2
\end{array}\right) \\
& =1 \cdot \operatorname{det}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
2 & -3 & 0 \\
5 & -7 & 2
\end{array}\right) \\
& =1 \cdot-1 \cdot \operatorname{det}\left(\begin{array}{cc}
-3 & 0 \\
-7 & 2
\end{array}\right) \\
& =1 \cdot-1 \cdot-3 \cdot \operatorname{det}(2) \\
& =1 \cdot-1 \cdot-3 \cdot 2 \\
& =6
\end{aligned}
$$

(z) - Palmira

Given Matrix :

$$
A=\left(\begin{array}{cccc}
2 & 0 & 1 & 0 \\
0 & -2 & 5 & 0 \\
0 & 1 & 0 & 2 \\
1 & 1 & -1 & -1
\end{array}\right)
$$

Solution:
(i) Checking Linear Independence:
$\alpha\left(\begin{array}{l}2 \\ 0 \\ 0 \\ 1\end{array}\right)+\beta\left(\begin{array}{c}0 \\ -2 \\ 1 \\ 1\end{array}\right)+\gamma\left(\begin{array}{c}1 \\ 5 \\ 0 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}0 \\ 0 \\ 2 \\ -1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$
Solving for each variable component wise gives:
$\alpha=0, \beta=0, \gamma=0, \lambda=0$
Hence, the column vecotrs of A are linearly independent
(ii) We apply Laplace's expansion formula to the first row to compute the determinant :

$$
\begin{aligned}
\operatorname{det}\left(\left(\begin{array}{cccc}
2 & 0 & 1 & 0 \\
0 & -2 & 5 & 0 \\
0 & 1 & 0 & 2 \\
1 & 1 & -1 & -1
\end{array}\right)\right) & =2 \operatorname{det}\left(\left(\begin{array}{ccc}
-2 & 5 & 0 \\
1 & 0 & 2 \\
1 & -1 & -1
\end{array}\right)\right)+0+1 \operatorname{det}\left(\left(\begin{array}{ccc}
0 & -2 & 0 \\
0 & 1 & 2 \\
1 & 1 & -1
\end{array}\right)\right)+0 \\
& =2\left(-2 \operatorname{det}\left(\left(\begin{array}{cc}
0 & 2 \\
-1 & -1
\end{array}\right)\right)-5 \operatorname{det}\left(\left(\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right)\right)\right)+2 \operatorname{det}\left(\left(\begin{array}{cc}
0 & 2 \\
1 & -1
\end{array}\right)\right) \\
& =2(-2 \cdot 2-5 \cdot-3)+2 \cdot-2 \\
& =18
\end{aligned}
$$

Since $\operatorname{det}(A) \neq 0, \mathrm{~A}$ is invertible.

Question 2

Refer to Message Scrambling portion of Section 13.

(a) - Siobhan

We are given the message M :

$$
M=\left(\begin{array}{llllllll}
0 & 1 & 15 & 2 & 4 & 4 & 7 & 20 \tag{1}
\end{array}\right)
$$

Let us pick our scrambling matrix, A, at random, say:

$$
A=\left(\begin{array}{ll}
5 & 2 \tag{2}\\
3 & 4
\end{array}\right)
$$

Then we need to find the corresponding un-scrambling matrix, B , which is actually the inverse matrix of A.

$$
\begin{align*}
B & =A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
4 & -2 \\
-3 & 5
\end{array}\right) \tag{3}\\
\operatorname{det}(A) & =\operatorname{det}\left[\begin{array}{ll}
5 & 2 \\
3 & 4
\end{array}\right]=(5)(4)-(2)(3)=14 \tag{4}
\end{align*}
$$

Thus the unscrambling matrix is:

$$
B=\frac{1}{14}\left(\begin{array}{cc}
4 & -2 \tag{5}\\
-3 & 5
\end{array}\right)=\left(\begin{array}{cc}
\frac{2}{7} & -\frac{1}{7} \\
-\frac{3}{14} & \frac{5}{14}
\end{array}\right)
$$

Now we apply the scrambling matrix to the message in 1 x 2 chunks, first by multiplying each chunk by A to create the scrambled message, and then by multiplying each chunk by B to recreate the original message.

If M is split into the following 1 x 2 chunks:

$$
\left(0 \begin{array}{ll}
0
\end{array}\right),\left(\begin{array}{ll}
15 & 2
\end{array}\right),\left(\begin{array}{ll}
4 & 4
\end{array}\right),\left(\begin{array}{ll}
7 & 20 \tag{6}
\end{array}\right)
$$

Then when we apply A to each of them (multiplying on the right so that the internal dimensions line up: 1x2 with 2 x 2 gives 1 x 2):

$$
\left.\begin{array}{rl}
\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
5 & 2 \\
3 & 4
\end{array}\right) & =\left(\begin{array}{ll}
3 & 4
\end{array}\right) \\
(15 & 2
\end{array}\right)\left(\begin{array}{ll}
5 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
81 & 38
\end{array}\right), ~\left(\begin{array}{ll}
5 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
32 & 24
\end{array}\right),\left(\begin{array}{ll}
5 & 2 \tag{10}\\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
95 & 94
\end{array}\right) .
$$

So then the full encoded / scrambled message is:

$$
M^{\prime}=\left(\begin{array}{llllllll}
3 & 4 & 81 & 38 & 32 & 24 & 95 & 94 \tag{11}
\end{array}\right)
$$

Now let's de-scramble it! Un-encode it! We'll do this by multiplying our scrambled message, M', on the right by our descrambling matrix, B. In chunks:

$$
\begin{align*}
\left(\begin{array}{ll}
3 & 4
\end{array}\right)\left(\begin{array}{cc}
\frac{2}{7} & -\frac{1}{7} \\
-\frac{3}{7} & \frac{5}{7}
\end{array}\right) & =\left(\begin{array}{ll}
0 & 1
\end{array}\right) \tag{12}\\
\left(\begin{array}{ll}
81 & 38
\end{array}\right)\left(\begin{array}{cc}
\frac{2}{7} & -\frac{1}{7} \\
-\frac{3}{7} & \frac{5}{7}
\end{array}\right) & =\left(\begin{array}{ll}
15 & 2
\end{array}\right) \tag{13}\\
\left(\begin{array}{ll}
32 & 24
\end{array}\right)\left(\begin{array}{cc}
\frac{2}{7} & -\frac{1}{7} \\
-\frac{3}{7} & \frac{5}{7}
\end{array}\right) & =\left(\begin{array}{ll}
4 & 4
\end{array}\right) \tag{14}\\
\left(\begin{array}{ll}
95 & 94
\end{array}\right)\left(\begin{array}{cc}
\frac{2}{7} & -\frac{1}{7} \\
-\frac{3}{7} & \frac{5}{7}
\end{array}\right) & =\left(\begin{array}{ll}
7 & 20
\end{array}\right) \tag{15}
\end{align*}
$$

So then the new message, M", is:

$$
M^{\prime \prime}=\left(\begin{array}{llllllll}
0 & 1 & 15 & 2 & 4 & 4 & 7 & 20 \tag{16}
\end{array}\right)
$$

Notice this is the original message, M! Why did this work? To each block of M, $M_{1 \times 2 b l o c k}$, we multiplied A and it's inverse B:
$M_{1 \times 2 \text { block }}^{\prime \prime}=M_{1 \times 2 b l o c k}^{\prime} B=\left(M_{1 \times 2 \text { block }} A\right) B=\left(M_{1 \times 2 b l o c k} A\right) A^{-1}=M_{1 \times 2 b l o c k} I=M_{1 \times 2 \text { block }}$
Try this process again with a different choice of A, and you can check all of your matrix multiplication steps using Matlab :)

(c) - Taylor

We have the following message

$$
M=\left(\begin{array}{llllll}
7 & 2 & 9 & 18 & 13 & 23 \tag{18}
\end{array}\right)
$$

Now we wish to design a 3×3 scrambling matrix, A, and its corresponding unscrambling matrix B. From Problem (a), we know that we are going to need our scrambler A to be invertible. So while we are free to choose A at random,
we have to be careful that it will in fact have a non-zero determinant (or linearly independent column vectors). Let's choose A as

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{19}\\
2 & 3 & 0 \\
0 & -1 & 2
\end{array}\right)
$$

Note that since A is lower triangular, its determinant is easily computed as

$$
\operatorname{det}(A)=a_{1,1} a_{2,2} a_{3,3}=(1)(3)(2)=6 \neq 0
$$

Now that we have a valid matrix A, we compute B from the requirement that $A B=I_{3 \times 3}$.

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 3 & 0 \\
0 & -1 & 2
\end{array}\right)\left(\begin{array}{lll}
b_{1} & b_{4} & b_{7} \\
b_{2} & b_{5} & b_{8} \\
b_{3} & b_{6} & b_{9}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

This gives a system of nine equations that can be solved without breaking too much of a sweat. I'll leave the grinding work as an exercise and just present the resultant B matrix. We find that

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 / 3 & 1 / 3 & 0 \\
-1 / 3 & 1 / 6 & 1 / 2
\end{array}\right)
$$

Note: As a quick check to see if this answer makes sense, note that $\operatorname{det}(B)=$ $1 / 6$, since B is again lower triangular. This is exactly the determinant we expect since we know that $A B=I$, and therefore

$$
\begin{aligned}
& \operatorname{det}(A B)=\operatorname{det}(I) \\
\Rightarrow & \operatorname{det}(A B)=1 \\
\Rightarrow & \operatorname{det}(A) \operatorname{det}(B)=1 \\
\Rightarrow & \operatorname{det}(B)=\frac{1}{\operatorname{det}(A)}
\end{aligned}
$$

which is exactly what we observe. Now we can scramble and unscramble the message. To do this, we split the matrix into two 1×3 sub-matrices as follows

$$
M=\left(\begin{array}{lll}
M_{1} & \mid & M_{2}
\end{array}\right)=\left(\begin{array}{lll|lll}
7 & 2 & 9 & 18 & 13 & 23
\end{array}\right)
$$

To scramble the first submatrix, M_{1}, we multiply by A on the right. The result is

$$
M_{1}^{\prime}=M_{1} A=\left(\begin{array}{lll}
11 & -3 & 18
\end{array}\right)
$$

We do the same for M_{2} and find

$$
M_{2}^{\prime}=M_{2} A=\left(\begin{array}{lll}
44 & 16 & 46
\end{array}\right)
$$

So the scrambled message is then

$$
M^{\prime}=M A=\left(\begin{array}{llllll}
11 & -3 & 18 & 44 & 16 & 46
\end{array}\right)
$$

To unscramble it, we simply apply our unscrambler B to the right as well, just like we did in example (a) above. We do this in blocks again, this time using

$$
M^{\prime}=\left(\begin{array}{lll}
M_{1}^{\prime} & \mid \quad M_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
11 & -3 & 18
\end{array} \left\lvert\, \begin{array}{llll}
44 & 16 & 46
\end{array}\right.\right)
$$

The unscrambled first block is then

$$
M_{1}^{\prime \prime}=M_{1}^{\prime} B=\left(\begin{array}{lll}
7 & 2 & 9
\end{array}\right)
$$

And the second block is

$$
M_{1}^{\prime \prime}=M_{1}^{\prime} B=\left(\begin{array}{lll}
18 & 13 & 23
\end{array}\right)
$$

Therefore the reconstructed message is

$$
M^{\prime \prime}=M^{\prime} B=\left(\begin{array}{llllll}
7 & 2 & 9 & 18 & 13 & 23
\end{array}\right)
$$

We've recovered our original matrix! Just like in example (a), the reason is that the matrices A and B are actually inverses of each other, so mutliply first by A and then by B on the same side is just like multiplying by the identity matrix - nothing changes!

