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Overview of Talk

I Non periodic signals

I The Windowed Fourier Transform

I The Continuous Wavelet Transform

I The Discrete Wavelet Transform

I The Wigner Distribution Function

I Implementing Algorithms on the Computer

I Using proprietary software for data analysis



Non Stationary Signals

I Often times a signal will not have a time independent
frequency. Take for example a short burst of EM
radiation. After some finite interval of time the signal
would vanish.

I To determine when a signal occurs as well as what normal
modes are most prevalent in its construction requires
time-frequency or time-scale analysis

I There are two major classes of transforms for this Short
Time Fourier Transform and the Wavelet Transformation



Solution One the Windowed Fourier Transform

f̃ (ω, τ) =

∫
e2πiωt w(t − τ) f (t) dτ (1)

I Exactly like the normal Fourier transform except that the
signal and the complex exponential are convolved with a
function with compact support.

I This solves the problem of temporal resolution however
one must remember that due to the uncertainty principle
associated with Fourier Analysis there is an intrinsic
”trade off” between frequency and time resolution.



Proof of the Fourier Uncertainty Principle
Assume that f is a normalizable function i.e. f ∈ L2∫

f 2(x)dx ∈ R

then by integrating by parts, and noting that x · |f |2 goes to
zero at positive and negative infinity we can say that

|f |2L2 =

∫
R
|f |2 = −

∫
R
x(f · f )′ = −2Re

∫
R
x · f · f ′

Next we use that a number’s modulus will always be greater
than or equal to it’s real part’s modulus as well as employing
the Cauchy Schwartz inequality.∣∣∣∣−2Re

∫
R
x · f · f ′

∣∣∣∣ ≤ 2

∫
R

∣∣x · f · f ′∣∣ ≤ 2 · |xf |L2 · |f ′|L2



Proof of the Uncertainty Principle (contd)

Now if we use Parsavel’s Identity and note that the derivative
of a Fourier transform is equivalent to multiplication by 2πξ

|f ′|L2 =
∣∣ f̂ ′ ∣∣

L2
=
∣∣ 2πξ · f̂

∣∣
L2

So we now have that

|f |2L2 ≤ 4π · |xf |L2 · |ξ f̂ |L2

Next we need to turn this result into a statement involving
variance instead of just the second moment. Define
g ≡ e−2πixξ0f (x + x0) then ĝ = e2πix0ξf (ξ + ξ0). Applying the
inequality above to g and ĝ gives

|f |2L2 ≤ 4π · |(x − x0)f |L2 · |(ξ − ξ0)f̂ |L2



Minimizing the Uncertainty Principle

I To minimize product of the uncertainties in both the real
and reciprocal space one can use a Gaussian wave packet.

I The Fourier transform of a Gaussian wave packet is
another Gaussian wave packet and the product of their
standard deviations results in a saturation of the
uncertainty principle.

I For this reason the window function is almost always
chosen to be a Gaussian to help optimize time-frequency
resolution.



Reconstructing the Signal

I In Fourier analysis we know that there is a one to one
correspondence between a signal and its Fourier
transform. But does such an inverse function exist for the
windowed Fourier transform.

I This inverse function may not necessarily be as symmetric
as the Fourier transform’s inverse and it will also map
from a function of two variables (time and frequency) to
a function of one variable.

I To derive this reconstruction formula we must use the
Fourier transform to our advantage.



Reconstruction Formula

We begin by noting that the windowed Fourier transform is
just the regular Fourier transform of our signal multiplied by a
window function

f̃ (ω, τ) = F{f (t)w(t − τ)}

Where we have defined fw as product of the signal and window
function. Next we use the inverse Fourier transform

w(t − τ) = F−1
{
f̃ (ω, τ)

}
Here you might expect we are done however we cannot simply
divide by the window function because it might vanish. If we
can generate the norm of the window function we can divide
by it because it must have a non zero norm



The Reconstruction formula cont’d

So next Then multiplying both sides by the window function
and integrating with respect to tau we obtain

f (t)

∫
R
dτ
∣∣w(t − τ)

∣∣2=

∫
R
dτw(t − τ)F−1

{
f̃ (ω, τ)

}

f (t) =
1

||w ||2L2

∫∫
R2

dωdτ e2πiωtw(t − τ)f̃ (ω, τ) (2)

This is the reconstruction formula for the windowed Fourier
transform. It is relatively simple and has a straight forward
derivation however this ”practice proof” will help in
understanding how to obtain the wavelet transform’s
reconstruction formula.



Review of the Windowed Fourier Transform

I The WFT can resolve both oscillatory and temporal
details

I Resolutions satisfy the Heisenberg uncertainty principle
(minimized by Gaussian windows)

I Somewhat computationally expensive

I Uses the same sized ”filter window” for all frequencies



Multi-Resolution Analysis

I One could imagine that at high frequencies one would
prefer better temporal resolution while at low frequencies
improved oscillatory resolution would be desired.

I The WFT fails to achieve this. You must pick a window
and stick to it throughout the transform. This is
undesirable

I This determines the time-frequency resolution trade off
for the entire duration of the transform

I If the window function naturally scaled it’s self to provide
desirable oscillatory and temporal resolution for whichever
frequency was of current interest them multi-resolution
analysis could be executed.



The Continuous Wavelet Transformation

f̃ (s, t) =

∫
R
du f (u)ψ

(
u−t
s

)
|s|−p (3)

The continuous wavelet transform is one example of the
aforementioned multi-resolution analysis, here s is scale and t
is time. The wavelet ψ must satisfy the following conditions.

I The wavelet must have compact support (be non zero
exclusively on some bounded interval)

I 0 <
∫
R

∣∣ψ̂(x)∣∣2
|x | dx <∞ (this will be justified later)

I
∫
R ψ(u)du = 0 (This follows from above)

NOTE: Here p is left general, the popular choice is p = 1/2
this is important if you read other literature.



Concept of the Mother Wavelet

I The wavelet ψ is assumed to be a function of just u and
this is called the mother wavelet as it generates all of the
daughter wavelets

I The distinction between the two is that the mother
wavelet is static while the daughter wavelets are scaled
and translated in time

I This can also be explained as ψ = ψ(u) and
ψs,t = ψ(u−t

s
)|s|−p where the former is the mother

wavelet, and the latter is a scaled and translated wavelet

I Note that ψ1,0 = ψ



Deriving the Reconstruction Formula Part 1

We begin by treating all of our functions as vectors in L2 space
for brevity’s sake also note that here the inner product is the
standard integral formulation for functional spaces. Employing
Parsavel’s identity we note that

f̃ (s, t) = 〈ψs,t |f 〉 =
〈
ψ̂s,t

∣∣∣f̂ 〉

ψ̂s,t(ω) =

∫
R
du |s|−pψ

(
u−t
s

)
e−2πiωu

Note that here u is time and ω is frequency now defining
u′ = u−t

s
we can note that the above is equivalent to∫

R
du′|s|1−pψ(u′)e−2πiωs(u

′+t) = |s|1−pe−2πiωtψ̂(sω)



Deriving the Reconstruction Formula Part 2

Using this result and taking the inner product with f̂ we obtain〈
ψ̂s,t

∣∣∣f̂ 〉 = |s|1−p
∫
R
dωe2πiωtψ̂(sω)f̂ (ω)

= |s|1−pF−1
t

{
ψ̂(sω)f̂ (ω)

}
Note the subscript on the inverse Fourier transform; this
denotes that here the time variable was t not u.ext we equate
what is above to f̂ and take the Fourier transform (with
respect to t not u of both sides.

Ft

{
f̃ (s, t)

}
= |s|1−p ψ̂(sω)f̂ (ω)



Deriving the reconstruction formula Part 3

Note we cannot divide by ψ̂(sω) because it might vanish,
however if an expression can be obtained for f̂ , f can be
obtained trivially. We start by multiplying both sides of the
equation by w(s) and ψ̂(sω)then integrating over all positive
values of s∫

R+

ds w(s)

∫
R
dt e−2πitωψ̂(sω)f̃ (s, t) =

∫
R+

ds w(s)|s|1−p f̂ (ω)
∣∣∣ψ̂(sω)

∣∣∣2
Now we define Y (ω) ≡

∫
R ds w(s)|s|1−p

∣∣∣ψ̂(sω)
∣∣∣ we will

assume this function is positive, bounded, and non-zero almost
everywhere (a.e. for short); this ensures we can divide by
Y (ω).



Deriving the reconstruction formula Part 4
Now we begin with another definition ψ̂s,t ≡ Y (ω)−1ψ̂s,t(ω)
{ψs,t} are called reciprocal wavelets. Taking advantage of
these new definitions we can write

f̂ (ω) = Y (ω)−1
∫
R+

ds w(s)

∫
R
dt e−2πiωtψ̂(sω)f̃ (s, t)

= Y (ω)−1
∫
R+

ds w(s)sp−1
∫
R
dt ψ̂s,t(ω)f̃ (s, t)

=

∫
R+

ds w(s)sp−1
∫
R
dt ψ̂s,t(ω)f̃ (s, t)

Now taking the inverse Fourier transform of both side we
obtain

f (u) =

∫
R+

ds w(s)sp−1
∫
R
dt ψs,t(ω)f̃ (s, t) (4)



The Reciprocal Wavelets
In the previous slide we defined this new set of reciprocal
wavelets for our convenience. Here we will investigate some of
their properties because of their inclusion in the reconstruction
formula.

ψs,t(u) = s1−p
∫
R
dω e2πiω(u−t)Y (ω)−1ψ̂(sω) = ψs(u− t)

Next we will try and see how scaling is affected

ψs(u) = s1−p
∫
R
dω e2πiωuY (ω)−1ψ̂(sω)

= s−p
∫
R
dω e2πiωu/sY (ω

s
)−1ψ̂(ω)

So it becomes clear that iff Y (ω) = Y (ω
s

) a.e. then {ψs,t,}
can be generated from the mother wavelet ψ1



Scale invariance
Remember that when defining Y (ω) we included the yet
undetermined w(s). Now we realize our goal is to make
Y (ω) = Y (ω

s
) a.e. Let w(s) = sp−2 then

ds w(s)s1−p =
ds

s

Now making the substitution sω = ±z

Y (ω) =

∫
R+

ds

s

∣∣∣ψ̂(sω)
∣∣∣2 =

∫
R+

dz

z

∣∣∣ψ̂(±z)
∣∣∣2 ≡ C±

Note that this holds everywhere except at 0 (a set of measure
0) and that Y (ω) is now piecewise constant and therefore
Y (ω) = Y (sω) and therefore {ψs,t} can be generated from
ψ1,0. We also impose the condition that 0 < C± <∞ this is
known as the admissibility condition.



A more intuitive admissibility condition

If ψ is an admissible wavelet then it satisfies∫
R+

dz

z

∣∣∣ψ̂(±z)
∣∣∣2 <∞

Note that unless as t → 0 ψ̂(t)→ 0 then the integral will not
be finite. So assuming ψ̂ is continuous then ψ̂(0) = 0 this is
equivalent to saying∫

R
ψ(t)e2πit·0dt =

∫
R
ψ(t)dt = 0

That is to say that a wavelet must be a wave centered about
the t axis.



A special case: Statistical Distributions
Suppose we have a function p(u) such that

∞∫
−∞

p(u)du = 1

∞∫
−∞

u p(u)du = 0

∞∫
−∞

u2p(u)du = 1

(i.e. a probability distribution with 0 mean and unit variance)
then let us assume that p(u) is n times differentiable where
n ≥ 1. Then assume that

lim
u→±∞

p(n−1)(t) = 0

Then let
ψn(u) ≡ (−1)np(n)(u)

And assume that ψ̂n is continuous then we have that
∞∫

−∞

dtψn(u) = (−1)n
(
p(n−1)(∞)− p(n−1)(−∞)

)
= 0



Statistical Distribution part 2
And thus ψn is an admissible mother wavelet not let us define

ψn
s,t ≡ s|−1ψn

(
u−t
s

)
ps,t(u) ≡ |s|−1p

(
u−t
s

)
Here ps,t is a statistical distribution with 〈u〉 = t and σ = s

f (s, t) ≡ 〈ps,t |f 〉 f̃n(s, t) ≡ 〈ψn
s,t |f 〉

Here f is a local average of the signal. Now noting that

ψn
s,t = (−1)nsn∂nups,t(u) = sn∂nt ps,t(u)

We have that

f̃n(s, t) =

∫
R
du ψn

s,t = sn∂nt

∫
R
du ps,t(u)f (u) = sn∂nt f (s, t)

i.e the CWT is proportional to the average’s nth derivative



Examples of wavelets

Note: The Mexican hat wavelet is the second derivative of a
Gaussian statistical distribution



Concepts of the Continuous Wavelet Transform

I The wavelet scales to modify its temporal and frequency
resolution to better resolve the signal

I Wavelets must satisfy particular properties

I The wavelet is naturally expressed using scale, not
frequency and the two are related by inversion

I Enough information is preserved by the CWT to ensure
that the original signal can be recovered. It could
conceivably (and in fact does) contain redundancies



Discrete Wavelet Transform

f =
∑
k∈Z

∑
j∈Z

cj ,k wj ,k cj ,k = 〈f |wj ,k〉 (5)

I Vector notation has been used here to stress this is a
functional space. So wj ,k ≡ wj ,k(t) = 2j/2w(2jt − k)
where {wj ,k} are the wavelet notes.

I This transform is analogous to the Fourier Series when it
is compared to the Fourier Transform.

I The notes actually forms a basis (i.e. they are linearly
independent and span the space)

I By creating a Basis we obtain the minimum amount of
information required to reconstruct the signal



Discretized Multi-Resolution Analysis Part 1

Let us examine the Hilbert Space of L2 with the standard
functional inner product (i.e. Lebesque measure). {wj ,k}
forms a basis and therefore we can write any function f ∈ L2 as

f =
∑
k∈Z

∑
j∈Z

cj ,k wj ,k

Now let us partition the set of all functions into cells Wi such
that WN is the space which is spanned by the set of linearly
independent functions {wN,k} with N fixed and k ∈ Z.
Similarly we can define VN to be the space spanned by {wi ,k}
such that i < N and k ∈ Z.



Discretized Multi-Resolution Analysis Part 2
It is relatively straight forward to see that VN = VN−1 ⊕WN

because WN contains all of the new linearly independent
vectors that appear in VN but were not in VN−1 also the fact
that WN 6= ∅ ∀N ∈ Z this implies that

∅ ⊂ ...VN−1 ⊂ VN ⊂ VN+1... ⊂ L2



Discretized Multi-Resolution Analysis Part 3

Each of the nested subspaces is composed from functions of a
particular scale (and frequency). Now let φ ∈ VN then

φ =
∑
k∈Z

∑
j<N

cj ,k wj ,k =
∑
k∈Z

∑
j<N−1

cj ,k wj ,k︸ ︷︷ ︸
a1∈VN−1

+
∑
k∈Z

cj ,k wN,k︸ ︷︷ ︸
d1∈WN

Now we have that φ = a + d1 if continued deconstructing the
sum above we could eventually end up with

φ = aα +
α∑

i=1

di

a is known as the analysis or average coefficient and {d} are
the detail coefficients.



Admissible wavelet notes

I Notes must be orthogonal i.e. 〈wj ,k |wj ′,k ′〉 = δj ,j ′δk,k ′Cj ,k

I The set of all notes must form a basis for L2 i.e

∀ f ∈ L2 ∃!{cj ,k} s.t. f =
∞∑
−∞

∞∑
−∞

cj ,kwj ,k

I wj ,k ∈ L2 and
∫
R dt wj ,k(t) = 0 ∀j , k ∈ Z

One can construct all of L2 using the wavelet functions wj ,k

provided you allow any possible integer value for j or k . This
has the distinct disadvantage of requiring an infinite number of
coefficients which is impossible to implement numerically.



Scaling Functions

Let us turn back to the nested subspaces discussed previously
and attempt to construct something that can serve to amend
this inconvenience. Let us construct an alternate set of
functions which form a basis for L2 We will require that

I {φj ,k} forms a basis for L2 (see previous slide for
definition) where φj ,k = 2j/2φ(2jt − k)

I φJ,k for a fixed J is orthogonal to its integer translations
i.e. 〈φJ,k |φJ,l〉 = δk,lCj

I φj ,k =
∑̀

h` φj+1,` ∀j , k ∈ Z



Combining the Scaling and Wavelet families

The final condition is the most important, it states that any
scaling function at a resolution j can be written as a sum of
the resolution above it. This is a cascading effect so that
{φJ,k} ∀k ∈ Z form a basis for VJ . So φJ acts as a plug
∀ Wj s.t. j < J so that we need not wander down to V−∞

During the analysis of a discretely sampled signal one is
restricted to the range of frequencies from 0 to the Nyquist
frequency. This upper bound removes the need to wander up
to V∞. As a result with the combined family of wavelet
functions, and scaling functions one can obtain a complete
description of a signal.

The more wavelet coefficients that are used the more ”detail”
or high frequency oscillations one recovers from a signal



An example of a scaling function

Here are the Haar scaling functions at two different scales.
Note these are not admissible wavelets but as a result they can
generate any Haar wavelets of greater or equal scale. The final
image shows integer translations of φj ,0 being used to generate
φj+1,0.



Hidden filters And Filter Banks
If one thinks for a bit about what subspaces are spanned by
the scaling functions and wavelet functions it becomes
relatively obvious that they are low-pass and band-pass filters
respectively when convoluted with a signal. This allows them
to be used as a filter bank.

Here g[n] are the analysis coefficients, and h[n] are the detail
coefficients. Essentially the signal is passed through a high
frequency band pass filter and separated into analysis and
detail coefficients. The process is repeated iteratively on the
analysis coefficient until enough detail has been removed.



The efficiency of the discrete wavelet transform

Computationally the DWT uses the least amount of
information possible required to reconstruct the signal. After
each level in the decomposition it halves the sampling rate
because the new Nyquist frequency is half the old one. This is
known as dyadic sampling.

This gives the DWT the following features

I Can be computed in N time compared to the FFT which
is calculated in Nlog(N) time

I Uses the minimum amount of information (good for data
compression bad for spectrographs)

I Significantly easier to implement numerically than CWT



Numerical Implementation of the Continuous

Wavelet Transform

Obviously nothing can be implemented continuously on a
computer and so the major difference between the CWT and
the DWT is the rate of sampling throughout the transform.
For the CWT no dyadic sampling is used and inefficiency is
chosen to allow for improved quality of data presentation.

This begs the question: which one is better for which
scenarios? In my opinion for data analysis the continuous
wavelet transform is superior however for image compression,
denoising and extremely quick computations the discreet
transform is better.



Software Platforms

For the Discrete Wavelet Transform

I Jwave

I Pywavelets

I MATLAB

For the Continuous Wavelet Transform

I MATLAB

I attempted to write my own continuous wavelet transform, it
provided decent results however MATLAB’s transform
executed faster and provided better plots



Using Matlab for Wavelet Analysis

I Matlab has a number of functions in it’s wavelet toolbox

I These include the discrete wavelet transform, the wavelet
packet transform, and the continuous wavelet transform

I For our purposes the continuous wavelet transform
(CWT) is best suited



Some MATLAB basics Part 1

I MATLAB is designed to work with matrices and vectors.
It has highly optimized operations which are designed to
work with vectors and matrices. All of these are preceded
by a period ”.”. This just means element by element
operation.

I For example if A and B have the same dimensions
C=A.*B would multiply the ith element of A by the ith
element of B and return a vector C of the same length as
A & B.

I All functions in MATLAB can take vectors and return
vectors.



Some MATLAB basics Part 2

I To create a linearly spaced vector you type X:Y:Z where
X is the first value in the vector,Y is the spacing, and Z is
the last value

I You can also stitch vectors together by using A=[B,C]
where B and C are vectors this would make A be
composed of all the elements of B followed by all the
elements of C.



Some MATLAB functions

I plot(x,y) given two vectors of the same length (x and y)
this will plot the values of one against the other and
output an image of said plot

I One can also change the title, and axis labels etc. by
including commands after the plot command. (i.e.
title(’X vs Y’))

I To read data from a text file use textread the syntax is as
follows

[vec1,vec2,...]=textread(’filename’, FORMAT)



Some more MATLAB functions

I To read data from a text file which is formatted one can
also use textscan the syntax is as follows

Q=textread(fileID, FORMAT)
Here Q is a cell matric which means that it



Basic Wavelet Syntax

I The function cwt takes 3 basic arguments, a signal
vector, a scales vector, and a wavelet identifier string. It
then outputs a two dimensional matrix which can be
interpreted as a scaleogram

I Basic syntax is as follows
A = cwt(signal, scales, ’wavname’)

I Sometimes frequency is desired instead of scales. to
create a freqeuncy vector that corresponds to the scales
vector used you can use the function scal2frq the syntax is

freq = scal2frq(scales,’wavname’, sampling rate)



Plotting options and syntax

I For the most flexible plotting options I suggest using the
funciton contourf this generates a filled contour plot of a
two dimensional matrix. You can also include axis vectors
the number of contour levels you would like.

I The syntax for this is pretty basic
contourf(xaxis, yaxis, matrix,nLVL)

I Axis labels and titles can be added in the same way as
with the plot command by adding lines to a matlab script
after the plot command was called



An example script

y=0:0.001:1;
x=sin(y .* y * 600 * pi);
scales=1:100;
scales=1./scales;
scales=wrev(scales); // this just flips the vector
scales=[scales,2:1:100];
A=cwt(x,scales,’morl’);
B=A .* A;
freq=scal2frq(scales,’morl’,0.001);
contourf(y,freq,B);
title(’Linear Chirp frequency and time’);
xlabel(’Time’);
ylabel(’Frequency’);



Another example script

[y,x]=textread(’signal.txt’,’%f �%f’); scales=1:100;
A=cwt(x,scales,’morl’);

B=A .* A;
freq=scal2frq(scales,’morl’,0.001);
contourf(y,freq,B,30);
title(’Signal.txt’s time frequency analysis’);
xlabel(’Time’);
ylabel(’Frequency’);



Output of previous Program



Notes on Data Analysis

I contourf uses relative heights for colouring so if you have
one very dominant signal it will wash out smaller ones
and assign them the same colour as 0.

I To fix this one can either specify a large number of levels,
or analyze smaller sections of the sample individually

I Often if one is not careful about the scale vector used
important features can be missed. It is worth using a
large scale range (1,100) and if the edges clearly contain
no more features then one can zoom in by adjusting the
scales that are used i.e. (1,20)

I If the wavelet transform is not squared there are often
residual ”ripples”. I suggest squaring the transform



Appendix 1: Measure Theory and Lebesgue

Integration
A measure is just a generalization of the concept of
length,area,volume and hyper volume. It is defined for some
set X as any function µ : X → R such that

I For a finite collection of pairwise disjoint sets
µ(∪i∈ZYi) =

∑
i∈Z µ(Yi)

I µ(∅) = 0

I µ(X ) ≥ 0 ∀X

The basic idea of Lebesgue integration is that you take the
target set of a function and decompose it into subsets Xi and
then find the measure of I (Xi) and sum those together. This
allows one to integrate discontinuous functions. The canonical
example is a function which is 1 for rational numbers and 0 for
irrational numbers.



Apendix 2: The Wigner Distribution Function

W (f , t) =

∫
R
x(t + τ/2) · x(x − τ/2)e−2πif τ dτ (6)

This transform is interesting in that it provides fantastic
spatial and time resolution and is somewhat easier to work out
analytically for example let x(t) = e2πif kt2 then

W =

∫
e2πifk(t+τ/2)

2

e−2πifk(t−τ/2)
2

e−2πif τ dτ

=

∫
e4πktτe−2πiτ f dτ = δ(f − 2kt)

This would seem to break the uncertainty principle however if
one carefully examines a chirp signal one will realize it does
not satisfy the conditions necessary in the proof. Namely it is
not square integrable.

The more recent Gabor-Wigner transform is worth examining
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