The problem

There is a randomly generated three-panel comic, with 74000 possible combinations ${ }^{1}$ How many images are there to randomly select from?

The Solution

It is easy to go the other way - If you have n images, and you want to find out how many combinations of 3 panels there are, you can simply use the following formula:

$$
\begin{equation*}
\binom{n}{r}=\frac{n!}{r!(n-r)!} . \tag{1}
\end{equation*}
$$

So, if we have $\mathrm{r}=3$, and

$$
\begin{equation*}
\binom{n}{3}=74000 \tag{2}
\end{equation*}
$$

then

$$
\begin{align*}
\frac{n!}{3!(n-3)!} & =74000 \tag{3}\\
\frac{n(n-1)(n-2)(n-3)!}{3!(n-3)!} & =74000 \tag{4}\\
n(n-1)(n-2) & =444000 \tag{5}\\
n^{3}-3 n^{2}+2 n-444000=0 . & \tag{6}
\end{align*}
$$

Solving for n using a computer ${ }^{2}$ gives

$$
\begin{equation*}
n=77.2932056177889 \tag{7}
\end{equation*}
$$

So, there are probably around 77 panels available for the random comic.

[^0]
[^0]: ${ }^{1}$ http://pandyland.net/random/
 ${ }^{2}$ http://www.sympygamma.com/input/?i=solve\%28n**3+-+3*n**2+\%2B+2*n+-+444000\%2C+ n\%29

