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Abstract

Information before unblinding regarding the success of con-
firmatory clinical trials is highly uncertain. Estimates of
expected future power which purport to use this informa-
tion for purposes of sample size adjustment after given in-
terim points need to reflect this uncertainty. Estimates of
future power at later interim points need to track the evo-
lution of the clinical trial. We employ sequential models to
describe this evolution. We show that current techniques
using point estimates of auxiliary parameters for estimat-
ing expected power: (i) fail to describe the range of likely
power obtained after the anticipated data are observed, (ii)
fail to adjust to different kinds of thresholds, and (iii) fail to
adjust to the changing patient population. Our algorithms
address each of these shortcomings. We show that the
uncertainty arising from clinical trials is characterized by fil-
tering later auxiliary parameters through their earlier coun-
terparts and employing the resulting posterior distribution
to estimate power. We devise MCMC-based algorithms to
implement sample size adjustments after the first interim
point. Bayesian models are designed to implement these
adjustments in settings where both hard and soft thresh-
olds for distinguishing the presence of treatment effects are
present. Sequential MCMC-based algorithms are devised
to implement accurate sample size adjustments for multiple
interim points. We apply these suggested algorithms to a
depression trial for purposes of illustration.

1. Introduction

◦During the design of a confirmatory clinical trial, it is of-
ten the case that required information is not fully available
and information that is used is often subject to a high de-
gree of uncertainty.
◦ This information includes, but is not limited to, the ex-

pected treatment differences, the assumed population
variance, and estimated dropout rates.
◦Group sequential and adaptive designs enable the eval-

uation of uncertainty in the planning phase without com-
promising the integrity of the trial.
◦ At interim points during the trial, re-evaluations of pre-

planned effect sizes and variance estimates may be ben-
eficial. If the original assumptions appear to be incor-
rect, adjustments can be made to improve the chance
that the trial will reach a definitive conclusion. One such
adjustment, which has been discussed extensively in the
literature, is to modify the sample size (i.e., sample size
re-estimation).
◦ Breaking the blind to perform sample size adjustment in

a clinical trial is frequently resource intensive.There are
significant credibility issues arising when the sample size
is examined using unblinded data. Unblinding may inflate
the Type I error rate.
◦ The 2010 draft guidelines [1] on adaptive designs recom-

mend that:
◦ blinded sample size adjustment procedures increase

the potential for a successful study while maintaining
Type I error control,
◦ blinded sample size adjustment procedures greatly re-

duce the risk of bias, and
◦ estimators of variance in support of sample size read-

justment are subject to increased variability during the
course of the trial.

◦ ICH guidelines [2] also cover blinded sample size adjust-
ment.
◦ In view of recommendations (1) and (2), we adopt sample

size procedures which provide sample size adjustments
in blinded settings. In view of (3), we adopt procedures
which: (a) take account of the error resulting from es-
timating the variance, and (b) adjust to changes in the
variance and associated auxiliary parameters over the
course of the trial.
◦We adopt a Bayesian approach to estimating the vari-

ance and associated auxiliary parameters at each stage
of the trial; we use particle filter models to adjust for
changes in the auxiliary parameters.

2. Overview

There have been three main approaches to sample size
determination in general settings in which hierarchical hy-
potheses are being tested [9] and [10].

(i) Predictive approaches to sample size determination
[11],[15], and [16].

(ii) Goal oriented approaches to sample size determination
[12], [13], [14], and [17].

(iii) Sample size determination using power estimation. Sam-
ple sizes are determined by calculating the “future power”
obtainable from adding future observations to the test
statistic (used to distinguish whether a significant re-
sponse is present) [3] and [18]. Historical data have been
used in this setting together with the EM algorithm.

We focus on sample size determination using power esti-
mation in blinded settings (item (iii) above). Our method-
ology can also be applied to goal-oriented sample size de-
termination (item (ii) above, [19], [21], and [22]). We leave
this for future work. Posthoc power [20] is the retrospec-
tive power of an observed effect based on the sample size
and parameter estimates. We compare our results below
with those obtained using posthoc power calculations made
after the additional subjects have been observed and un-
blinding has occurred. Gould and Shi [4] calculate power
and expected power (using what we refer to below as the
approximate strategy) in blinded settings. The approximate
strategy fails to:
◦ provide a range of expected power with regard to what is

achievable;
◦ adjust to the presence of soft treatment effect thresh-

olds; these occur when there is disagreement over which
threshold to use; and
◦ does not adjust to changing patient populations (i.e., the

heterogeneity of early versus later enrolled patients).
Our proposed methodology employs a Bayesian strategy to
address all of these shortcomings.
◦We provide a markov chain monte carlo (MCMC) ap-

proach to calculating expected power in both hard and
soft threshold settings.
◦ Particle filters are utilized to formulate models which

properly adjust to changing patient populations.

◦ There are a wide variety of Bayesian strategies proposed
in the literature for sample size determination [13], [24],
and [27]. Related to these are a number of model se-
lection approaches which employ simulation-based ap-
proaches [12], [25], [28], and [34].
◦Most Bayesian and model selection strategies involve

providing sample size adjustment at a single interim
point. The problem of providing a sample size adjustment
after a number of interim points have been observed has
received much less attention. Below, we offer a sequen-
tial framework for addressing this problem.
◦We address the issue of how patient population changes

between interim points influence sample sizes recom-
mendations by using particle filter methodology [29] and
[30].
◦Our methodology combines nonsequential Bayesian and

model selection strategies for sample size estimation with
their sequential counterparts.

3. Previous Work

Gould and Shih ([3] and [4]) discussed modifying the de-
sign of ongoing trials without unblinding by providing an ad-
justed version of the one-sample variance estimator. They
proposed a procedure to estimate the within-group variance
for sample size re-estimation without unblinding the clinical
trial data at interim stages using the EM algorithm. This
procedure made use of Maximum Marginal Likelihood Esti-
mates (MMLEs) of within-group variability.
Friede and Kieser [5] and [6] questioned the reliability of the
within group variance estimates of the Gould and Shih ap-
proach [4] and later provided a number of alternatives for
blinded sample size evaluations. Xing [7] used the enroll-
ment order of subjects and the randomization block size to
estimate the within group variance.

4. Setup

We propose using information from blinded data. The pur-
pose of this research is to provide a framework for sample
size determination under these conditions. We assume two
subject groups; our methodology readily extends to more
than two groups.

(i) Assume n identical, mutually independent subjects are
randomly assigned to the control or experimental treat-
ment groups with known probabilities 1−p and p, respec-
tively.

(ii) The parameter δ corresponds to the treatment effect in
the clinical trial; θ includes all the auxiliary parameters,
such as the pooled standard deviation. The parameters
θ and δ are both assumed to be unknown.

(iii) observed subject responses

(a) Observed subject responses Xi in the experimental
treatment arm are assumed to be distributed accord-
ing to f1(x|θ, δ), with known density f1.

(b) Observed subject responses in the control arm are as-
sumed to be distributed according to f0(x|δ, θ), with
known density f0.

(iv) We use the notation Zi = 1 to indicate that subject i is
assigned the treatment; Zi = 0 denotes the control group
assignment. The probability that Zi = 1 is assumed to be
the known value p (i=1,..,n).

(v) We use the notation X = (X1, ..., Xn) for the interim
sample having size n. We anticipate that the addi-
tional, as yet unobserved, m observations X(new) =

(X
(new)
1 , ..., X

(new)
m ) can also be selected from the same

families of distributions.

(vi) We would like to distinguish between a null and alter-
native model. We will be concerned with two different
settings in which sample size adjustments can be imple-
mented:

(a) In the hypothesis testing setting, tests are devised in
which the assumed threshold, distinguishing whether
a treatment effect is present, is fixed over the entire
length of the trial;

(b) In the model selection setting, more conservative tests
with noisy thresholds are devised.

Tests used under a model selection setting are distin-
guished from those devised in hypothesis testing settings
by the assumption of a prior distribution with additional
noise for the treatment effect; in this Section we use the
notation, λ for the additional (auxiliary) parameters intro-
duced in this case.

(i) Hypothesis Testing Setting:
Deciding which of two disjoint sets (referred to below as
g0 and ga) the parameter δ belongs to. Group sequential
and adaptive designs enable the evaluation of uncer-
tainty in the planning phase without compromising the
integrity of the trial. These techniques, including sam-
ple size re-estimation have been discussed extensively
in the literature. Abusing notation slightly we assume, in
this case, that θ has prior h(θ).

(ii) The Model Selection Setting:
In this setting, the aforementioned models correspond
to two distinct families of prior distributions. One model
assumes that the parameter of interest δ is distributed
according to the family of distributions, g0(•|λ) with un-
known (auxiliary) parameter λ. The other model assumes
that δ is distributed according to the family of distributions
ga(•|λ). We test the hypotheses:

H0 : δ ∼ g0(•|λ)

Ha : δ ∼ ga(•|λ)

where λ is assumed to be independent of the parame-
ter δ but possibly not independent of θ. In view of this,
we assume that the parameters θ and λ have joint prior
h(θ, λ).

Assuming responses from n subjects are observed, our pri-
mary objective is to calculate the additional sample size
m required to differentiate between the models g0 and ga.
Classical statistics interprets this requirement in terms of
choosing a number m of additional observations needed to
insure that the resulting power of the test distinguishing be-
tween the two models is above a particular threshold. We
adopt this viewpoint.

5. Theory and Methods

◦ The proposed strategy assumes that the parameters λ
and θ are estimated a posteriori using the data X =
(X1, ..., Xn). We use simulated data X∗ = (X∗1 , ..., X

∗
n)

and yet to be observed random variables, X(new) (of size
m) to estimate the power.
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◦ For this purpose we employ conditional likelihood ratio
tests ([32] and [33]) and a simulation based approach
([12], [14], [28], and [34]). Our approach makes substan-
tial use of MCMC methodologies [35].
◦ In the model selection setting, we employ null and al-

ternative posterior distributions ([36] and [37]) which are
calculated using marginalized likelihoods. This is fre-
quently equivalent, in the model selection setting, to cal-
culating the posterior probabilities of the null and alterna-
tive hypotheses when the simulated and additional data
are generated from their (respective) null and alternative
predictive posterior distributions [34] and [36]. In the hy-
pothesis testing setting, we construct (generalized) con-
ditional likelihood ratio statistics (CLRT) by choosing pa-
rameters least favorable to the null and alternative hy-
potheses [32] and [33].
◦ For reasons of convenience, we employ the test value,
Tn+m(X∗,X(new), λ, θ,Z∗,Z(new)), corresponding to the
additive inverse of the conditional likelihood ratio statis-
tic. In hypothesis testing settings, we drop λ from the
description of Tn+m. The binary treatment assignment
variables Z∗ and Z(new), associated respectively with the
simulated and as yet unobserved values are assumed to
have their prior distribution: P (Z = 1) = p. For purposes
of simplification, we assume that p is 0.5 and that the
experimental design has two treatment groups. Our re-
sults generalize easily to arbitrary p with more than two
treatment groups. In both the critical value and power
calculations described below, we make extensive use of
the law of large numbers and the central limit theorem
[31]. We adopt the notation (•) for the density of the vari-
able •. The notation, PH denotes the posterior probabil-
ity operator over the simulated and anticipated observa-
tions X∗,X(new) under the null and alternative hypothe-
ses H = H0, Ha, respectively.
◦ The critical value of the test is a parameter
Crit = Crit(λ, θ) whose posterior distribution is
calculated with Crit = Crit(λ, θ) and Tn+m =

Tn+m(X∗,X(new), λ, θ,Z∗,Z(new))) from:

α = PH0

(
Tn+m < Crit

∣∣∣λ, θ)
(X∗,X(new)) ∝ mH0

(•|λ, θ,Z∗,Z(new))(Z∗,Z(new))(
λ, θ
∣∣∣X) ∝ mH0

(X|λ, θ, Z)h(θ, λ)(Z) (1)

The notation mH(•|λ, . . .) used in equations (1) and (2),
refers to the distribution of the observations (both simu-
lated and anticipated) marginalized over the hypothesis
H = H0, Ha; the notation mH(X|λ, θ,Z) refers to the ob-
servations marginalized over the hypothesis H = H0, Ha.
◦ The power of the test, also a parameter, is then calcu-

lated using the previously calculated critical parameter
and the anticipated observations X(new) together with the
above specifications via:

Power(n + m|λ, θ) = PHa
(Tn+m < Crit)

(X(new),X∗) ∝ mHa
(•|λ, θ,Z∗,Z(new))(Z∗,Z(new))(

λ, θ
∣∣∣X) ∝ mHa

(X|λ, θ,Z)h(λ, θ)(Z) (2)

◦Having simulated the power aposteriori, we calculate
High Posterior Density (HPD) intervals for the power and
present them in lieu of fixed power estimates. The crit-
ical value given in equation (1) and the power given in
equation (2) are analogous to the (Bayesian) sample size
determination (SSD) separation quantities given in Wang
and Gelfand (equations 10a and 10b of [34]).

6. Relevant Theoretical Results

The primary theorems relevant to using our formulation are
the following: We use the notation δ̂n+m[H ] = δ̂n+m(λ, θ)[H ]
for the value of δ resulting from maximizing the likelihood
combining the simulated and additional observations under
the given hypothesis H = H0, Ha. To simplify notation, we
do not drop the auxiliary parameter λ from discussion of the
hypothesis testing setting, below. In accordance with this
simplification, I(X) denotes a given posterior HPD interval
for the parameters λ and θ.
Theorem 1 The critical value parameter crit = crit(λ, θ)
can be chosen to satisfy the significance level condition,

PH0

(
Tn+m(X∗,X(new), λ, θ) < crit

)
= α (3)

if, for the conditional HPD interval λ, θ ∈ I(X) having given
size, eventually as m→∞:

δ̂n+m(λ, θ)[H0] ∈ g0,∀λ, θ ∈ I(X) (4)

or, in the model selection setting, ∀ε > 0

lim
m→∞

Pδ∼g0

(
|δ̂n+m(λ, θ)[H0]− δ| < ε|X

)
= 1, ∀λ, θ ∈ I(X)

(5)
Theorem 2 Using the same notation as was introduced in
Theorem 1, and assuming that the critical value parameter
crit = crit(λ, θ) has been chosen, the condition,

PHa

(
Tn+m(X∗,X(new), λ, θ) < crit

)
≥ 1− β (6)

is satisfied for large enough m if, for the conditional HPD in-
terval λ, θ ∈ I(X), having given size, eventually as m tends
to infinity,

δ̂n+m(λ, θ)[Ha] ∈ ga,∀λ, θ ∈ I(X) (7)

or, in the model selection setting, ∀ε > 0,

lim
m→∞

Pδ∼ga,λ,θ|X
(
|δ̂n+m(λ, θ)[Ha]− δ| < ε|X

)
= 1 (8)

Theorems 1 and 2 hold in the hypothesis testing setting if,
for example, the assumed prior for θ is proper and sup-
ported on the whole real line. The theorems hold in the
model selection setting if, in addition to the aforementioned
assumption, the assumed prior for the λ is proper and has
conditional support (for all θ) on the whole real line.

7. Hypothesis Testing Setting: Depression Trial
Example

◦ Assume n identical, mutually independent subject re-
sponses, X = (X1, ..., Xn) are observed at the first interim
stage. Each subject is randomly assigned to the control
or experimental treatment groups with known probabili-
ties 1 − p and p, respectively. This setting can easily be
adapted to more than two treatment groups. We assume
that lower response scores indicate improvement.

◦ The average effect of the treatment is denoted by the pa-
rameter δ; the mean control response is denoted by the
auxiliary parameter µ. The pooled standard deviation is
denoted by the auxiliary parameter τ . Using the notation
of Section 5:

(i) the auxiliary parameter θ corresponds to (µ, τ ),
◦ subject responses in the treatment arm are distributed

according to f1(•|δ, θ) = N (µ− δ, τ ) and
◦ subject responses in the control arm are distributed ac-

cording to f0(•|δ, θ) = N (µ, τ ).

(ii) We test the hypothesis,

H0 : δ = 0; (9)
Ha : δ > δ1 (10)

The latent variable Zi is 1 if the i’th subject is in the treat-
ment arm and 0 otherwise. For simplicity we assume two
treatment groups with a 1:1 allocation ratio; thus p=0.5.

(iii) We employ the quantity,

T (X,Z, τ, µ) =

∑
i(Xi − µ)Zi

τ2
(11)

which is the additive inverse of the conditional likelihood
ratio, up to a constant of proportionality.

(iv) We calculate the posterior distributions under the null and
separately under the alternative.

(v) Parameters calculated under the null posterior are de-
noted by: µ0 and τ0; those under the alternative posterior
are denoted by: µa and τa. We assume τ2 has an (an ap-
proximately indifferent) inverse gamma prior with shape
hyperparameter 1 and (a small) scale hyperparameter ε1.

The proposed approach:
For a given significance level (α = .05), the critical pa-
rameter c is necessary to compute the power associated
with m additional observations. We characterize the poste-
rior distribution of c using B MCMC simulations indexed by
b = 1, ..., B of the marginal null posterior distribution. We
characterize the posterior distribution of the power using B
analogous simulations of the marginal alternative posterior
distributions. Below, Φ denotes the standard normal cdf.

c(b) =
Φ−1(α)

√
n + m

τ
(b)
0

√
2

(12)

power(b)[n + m] =

Φ


τ (b)

a

τ
(b)
0

Φ−1 (α) +
δ1

τ
(b)
a

(√
n + m

2

) (13)

Power is properly estimated by an HPD interval taking the
form:

power[n + m] < power < power[n + m]

where power[n + m] denotes a lower posterior quantile and
power[n+m] an upper posterior quantile measurement. We
employ HPD power estimates as described in equation (7).
In order to apply the proposed methods, we considered a
placebo-controlled study of depression. The details of this
trial are given in Mahmoud et al. [38]. Adult outpatients
with major depressive disorders who had an incomplete
response to antidepressant treatment were randomly as-
signed (1:1) to active drug or placebo regimens for 6 weeks
duration in a double-blind multicenter trial. The primary effi-
cacy endpoint was the mean difference between treatments
at endpoint using a 17-item Hamilton Rating Scale for De-
pression (HRSD-17). A sample size of 116 patients in each
group was anticipated to have 90% power to detect a differ-
ence in mean HRSD-17 total score change from baseline
of 3.0 units assuming that the common standard deviation
was 7 using a two-group t-test with a 0.05 two-sided sig-
nificance level. Adjusting for drop outs, approximately 270
subjects were assumed to be randomized.
Enrollment visit dates were used to order subject entry
into the trial. Sample size assumptions were evaluated
for demonstration purposes after the 100th, 150th, 200th,
and 250th subject completed the trial. In the left panel of
Figure 1, 90% HPD intervals were calculated for expected
power after the 100th subject level data (i.e.,observation)

had been examined. The posterior null and alternative dis-
tributions for the hypothesis testing (respectively, model se-
lection setting) of the pooled standard deviation τ are given
in the left (respectively, right) panels of Figure 2; their mean
corresponds roughly to the pooled standard deviation esti-
mates computed in the original study. In the next Section,
we examine multiple stage sample size determination in the
context of this example.
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Figure 1: 90 Percent HPD intervals for expected power us-
ing the first 100 subjects when 50 additional observations
are anticipated for the Depression Trial in the hypothesis
testing and model selection settings, respectively. Posthoc
power was calculated to be 66% after the 150th observa-
tion. This is well within the HPD interval given in the left
panel.

 

 

Data Set 

 

N, LS-Mean (SE) 

 LS-Mean 

Diff (SE), 

[95% CI] 

  

Post-Hoc Power at 

Drug Placebo 0.05 0.025 

        

First 100 subjects 54, 16.1 ( 1.0) 46, 19.3 ( 1.0)  -3.2 ( 1.4), 

[-6.0 ;-0.4] 

 0.610 0.496 

        

101-150 subjects 29, 15.9 ( 1.3) 21, 17.6 ( 1.5)  -1.8 ( 2.0), 

[-5.8 ; 2.3] 

 0.138 0.084 

        

First 150 subjects 83, 16.0 ( 0.8) 67, 18.8 ( 0.8)  -2.7 ( 1.1),  

[-5.0 ;-0.5] 

 0.663 0.553 

        

151_200 subjects     23, 13.1 ( 1.2) 27, 16.2 ( 1.1)  -3.1 ( 1.6), 

[-6.4 ; 0.2] 

 0.462 0.349 

        

First 200 subjects 106, 15.4 ( 0.7) 94, 18.0 ( 0.7)  -2.6 ( 1.0), 

[-4.5 ;-0.8] 

 0.784 0.692 

        

201_258 subjects     26, 16.5 ( 1.5) 32, 16.0 ( 1.4)  0.5 ( 2.0), 

[-3.5 ; 4.5] 

 0.056 0.029 

        

Complete Data Set 132, 15.6 ( 0.6) 126, 17.5 ( 0.6)  -1.9 ( 0.9), 

[-3.6 ;-0.2] 

 0.591 0.478 

 Table 1: Posthoc power, calculated in an unblinded setting,
for the Depression data
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Figure 2: Null and Alternative posterior densities of the τ
and σ parameters in the model selection and hypothesis
testing setting

8. Clinical Trial Sample Size Adjustments in a Model
Selection Setting

◦ The model selection setting is similar to that given in Sec-
tion 7, but we now incorporate a variety of judgments
about the threshold δ1, distinguishing whether a treat-
ment effect is present.
◦ By adding noise to both the null and alternative hypothe-

ses, we effectively incorporate all of these judgments; we
call this the, “model selection setting.” Tests in model
selection settings are more conservative and hence give
rise to smaller expected power than their hypothesis test-
ing counterparts.
◦ The average effect of the treatment is denoted by the pa-

rameter δ; the mean control response is denoted by µ.
The pooled standard deviation is denoted by τ . Subjects
in the treatment arm are assumed to be distributed ac-
cording to N (µ − δ, τ ); subjects in the control arm are
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distributed according to N (µ, τ ). Our objective in this
Section is to test the noisy (vague) null and alternative
hypotheses given below.

◦ The null and alternative hypotheses, for fixed, known δ1,
are:

H0 : δ ∼ N (0, σ2) (14)
Ha : δ ∼ N (δ1, σ

2) (15)

◦ The null hypothesis effectively adds the (Gaussian) noise
factorN (0, σ2) to the null hypothesis assumed in equation
(9) and the alternative hypothesis in equation (10).

◦ The addition of noise converts the assumed hard thresh-
old δ1 into a soft threshold.

◦ In the notation of Section 5, the auxiliary parameter λ
corresponds to the parameter σ, defined above.

◦ The marginal likelihoods (ML) under the null and alterna-
tive hypotheses are:

ML under null ∼
exp
{
−(1/2)

∑
i

(
(Xi−µ)2

Ziσ2+τ 2

)}
∏
i

√(
Ziσ2 + τ2

)

ML under alternative ∼
exp
{
−(1/2)

∑
i

(
(Xi−µ+δ1Zi)

2

Ziσ2+τ 2

)}
∏
i

√(
Ziσ2 + τ2

)
◦ Let ψ = σ2 + τ2. We assume a nearly indifferent prior

for ψ, the usual Bernoulli prior (p, 1 − p) for the Z’s, and
the prior described in Section 7 for τ2. We assume an
inverse gamma prior for ψ having shape parameter 1 and
scale ε1. σ2 inherits a prior from that given for τ2 and ψ.

◦We can compute the critical value parameter by first
marginalizing over the null and separately over the alter-
native hypotheses (see e.g., [36]).

◦ The additive inverse of the conditional likelihood ratio
statistic is:

Tn(X, µ, σ, τ,Z) ∝
∑
i

(
Zi(Xi − µ)2 − Zi(Xi − µ + δ1)2

Ziσ2 + τ2

)

∝
∑n
i=1Zi(Xi − µ)

ψ

◦ The proposed approach: We adopt the same conven-
tions as were adopted in section 7 (above). The notation
ψ, is as defined above. The quantities, ψ0 and ψa, denote
the parameter ψ under the null and alternative posterior
distributions, respectively. The critical value and power
parameters are computed at significance level α as:

c(b) =
Φ−1(α)

√
n + m√

ψ
(b)
0

√
2

(16)

power(b)[n + m] =

Φ



√
ψ

(b)
a√
ψ

(b)
0

Φ−1 (α) +
δ1√
ψ

(b)
a

(√
n + m

2

)
 (17)

◦ As an example, we describe our results for the depres-
sion study. The parameters τ and σ take on a variety
of values in this case under both the null and alternative
posterior distributions, as a consequence of the noisy na-
ture of the test (see Figure 2).

◦Note the lower expected power in this case. This is a
consequence of the fact that the hypotheses are noisier
and hence provide less evidence of future power. (see
Figure 1, right panel).

9. Advanced Stage Sample Size Determination

Additional Sample Size, m=50
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Figure 3: 90 percent HPD intervals for the Advanced Stage
Power Estimation after Samples of sizes 100+50 have been
observed. The figure on the left estimates power in the De-
pression Trial assuming a change in reliability; the figure on
the right estimates power assuming no change in reliability.
Table 1 gives a (posthoc) power of 78% after 200 observa-
tions. This is roughly comparable to the lower HPD quantile
but not the median HPD quantile.

◦Nearly all ongoing clinical trials are monitored continu-
ously and blinded data sets become available at pre-
specified periodic intervals. This condition provides am-
ple opportunity to examine blinded data at various interim
points.
◦ Early enrolled patients frequently demonstrate different

behavior than those patients entering the study later.
◦ In the depression trial, introduced above, early enrolled

patients demonstrated more reliable behavior than those
entering the study later. In this case, predictions are im-
proved by giving more weight to earlier patients.
◦ In this Section, we propose an algorithm for calculating

sample size adjustments at a later interim point which
takes account of the aforementioned reliability concerns.
This enables us to accurately update the auxiliary param-
eters using all of the data observed before the adjustment
is recommended. We refer to this below as advanced
stage sample size adjustment.
◦We demonstrate our results for two interim points; gener-

alizations to more than two interim points are clear.
Using notation analogous to that introduced in Section 5:
(i) Assume at interim stage j (j=1,2), nj identical, mutu-

ally independent subjects are randomly assigned to treat-
ment groups with known probability, p.

(ii) ◦ Subjects in the experimental treatment arm with ob-
served values Xi,j (i=1,..,n; j=1,2) are modeled as
coming from the normal distribution N (µ− δZi,j, τj).
◦ Subjects in the control arm with observed values Xi,j

are modeled as coming from the normal distribution,
N (µ, τj).

(iii) We use the notation Zi,j = 1 to indicate that subject i cor-
responding to interim stage j is assigned the treatment;
we use the notation Zi,j = 0 to denote the control group
assignment. The probability of Zi,j = 1 is assumed to
be p. We use the notation Xj = (X1,j, ..., Xnj,j) for the
interim sample having size nj (j=1,2).

(iv) We anticipate that the additional, as yet unobserved, m
observations X(new) = Xn+1:m = (Xn+1, ..., Xm) are gen-
erated from the normal distribution N (µ − δZi,j, τ2). We
test the null and alternative hypotheses given by

H0 : δ = 0 (18)
Ha : δ > δ1; (19)

(v) We use the notation fh,j to denote the likelihood under
hypothesis h = 0, a at interim point j and τh,j for the scale
parameter under hypothesis h at interim point j. We omit
mention of µ in this notation.

(vi) κh1 and κh2 characterize the shape and scale respec-
tively of gamma random variables tending to take values
larger than 1 having a ratio larger than 1.

(vii) The gamma variable ch with shape κh1 and scale κh2,
used below, reflects the presumed reduction in certainty
in going from the first to the second interim data set;
we use the notation Gamma(κh1, κh2) for the resulting
gamma distribution. We assume the same approximate
indifference prior for τh,1 as was assumed for τh above.

(viii) We employ the model:

X1 ∼ fh,1(•|τh,1)

τh,2 ∼ chτh,1 ch ∼ Gamma(κh1, κh2) (20)
X2 ∼ fh,2(•|τh,2)

(ix) Note that, by assumption, the prior distribution for τh,2
provides a large prior probability that τh,2 is larger than
τh,1; the size of this probability depends on the hyperpa-
rameters κh1 and κh2 for h = 0, a. We adopt the notation
(•|X1,X2)Hj

to denote the Hj posterior distribution of τ
given all of the observed data.

(x) Posterior inference in this case makes use of standard
particle filter algorithms [29] and [30].

(xi) We calculate critical values and power using the posterior
distributions:

τ
(b)
0,2 ∼ (•|X1,X2)H0

; b = 1, ...., B

τ
(b)
a,2 ∼ (•|X1,X2)Ha

; b = 1, ...., B

(xii) The critical values and power can then be calculated us-
ing:

c(b) =
Φ−1(α)

√
n + m

τ
(b)
0,2

√
2

(21)

power(b)[n + m] =

Φ


τ (b)

a,2

τ
(b)
0,2

Φ−1 (α) +
δ1

τ
(b)
a,2

(√
n + m

2

) (22)

(for n = n1 + n2).
(xiii) We calculate estimated power using the data from the

depression trial, described previously. The first interim
point comes after 100 data points are observed; the sec-
ond comes after an additional 50 data points have been
observed. We assumed κh1 = 3 and κh2 = 2. Our re-
sults were compared with those for which no change in
reliability was assumed (i.e., the original framework). The
upper and median quantiles of the adjusted future power
estimates given in Figure 3 are comparable to their unad-
justed counterparts. The lower quantiles of the adjusted

future power estimate is substantially smaller than its un-
adjusted counterpart; this is a consequence of the fact
that by adjusting for the greater reliability of earlier pa-
tients we give less weight to the accumulated evidence
against the null at interim point 2.
We note that Table 1 gives a (posthoc) power of .78 after
200 observations. This is easily within the scope of the
adjusted HPD interval but roughly outside the scope of
the unadjusted HPD interval (see Figure 3).

10. Conclusion

(i) We have argued in favor of:
(a) providing sample size adjustments before unblinding,
(b) providing adjustments in both soft and hard threshold

settings, and
(c) providing more accurate and more flexible auxiliary

parameter (e.g., variance) estimators in support of
changes in patient population.

(ii) In further support we note the many guidelines recom-
mending these adjustment changes (see Section 1).

(iii) The information available before unblinding, although
useful, is highly uncertain. Estimates of expected (fu-
ture) power obtained in this setting need to reflect this
uncertainty. We have shown that current techniques us-
ing point estimates of auxiliary parameters for estimating
expected power fail to:

(a) accurately describe the range of likely power obtained
after the anticipated data are observed,

(b) fail to anticipate the need for sample size adjustments
in the presence of both hard and soft threshold settings,
and

(c) fail to adjust to changes in the patient population.
(iv) The procedures devised above addressed all of these

shortcomings.
(v) Breaking the blind to perform sample size adjustment in

a clinical trial is resource intensive; blinded sample size
re-estimation is generally well accepted by regulators.
Nearly all ongoing clinical trials are monitored continu-
ously and data sets become available at periodic inter-
vals. This monitoring provides ample opportunity to ex-
amine blinded data at various interim points. The data set
consisting of the collection of all interim data sets is the
combined data set. Patients enrolled in earlier interim
data sets may demonstrate more reliable behavior than
patients entering the study at a later point.

(vi) The proposed multistage algorithm provides flexibility
in assigning weights to auxiliary parameters associated
with different interim data points, according to the sub-
jective assessment of the researcher.

(vii) For the depression example, predictions are frequently
more accurate when the pooled standard deviation for
early enrolling patients is assumed to be smaller apriori
than the pooled standard deviation for their later enrolling
counterparts. We have argued that this difference in ac-
curacy should be modeled by filtering auxiliary parame-
ters arising from later interim points through those arising
from earlier interim points.

(viii) Particle filter models were shown to provide an appropri-
ate mechanism for modelling these prior relationships.

(ix) In the depression trial example, the differences in re-
sponse between the last set of subjects and the first 200
subjects were apparent. This response heterogeneity
had a significant effect on the posthoc power, underscor-
ing the need for estimates of future power which accu-
rately model it. The uncertainty in the information avail-
able before unblinding is accurately characterized by sta-
tistical models which make use of the posterior distribu-
tion, conditional on the observed response data, of the
auxiliary parameters. More generally, response hetero-
geneity over the course of a clinical trial, is a common
problem; it is hoped that the suggested methodology can
be useful.
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