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1 Introduction and important things

This paper is for the subject Models in operation research. This paper consists of the study of two
types of algorithms, one of them is GRASP(Greedy Randomized Adaptive Search Procedure), did
it in one class with our teacher Rafa, and the other follows the methodology of tabu search , did
it by ourselves. Our study consist of solve the maximum diversity problem (MDP). The problem of
maximum diversity consists of selecting a certain number of elements from among all the available
ones in order to obtain the greatest diversity. If we draw in a plane the elements represented by points,
we look for those whose sum of distances between them is greater, hence the term of greatest diversity.

To do our paper, we need two parts; first of all we need to calibrate the parameters of our algorithms
and secondly, we will do the comparative between both algorithms. Both parts will be done in a
collection of 8 problems with size 500.

It is noted that the programming language that we have used in the implementation of both algo-
rithms has been Dev-C++ 5.11. Obviously we have run the algorithms, whom we are going to speak
later, in the same computer which has the following characteristics: Intel(R) Core(TM) i3-3217U CPU
1.8GHz. Then we have had the results with the limitations of our computer, but we always guaranty
that the results are fairly taken in both algorithms with the same computation time. The C code has
been attached by e-mail. We have chosen this way for two reasons: The reader will be more interested
in the selection of the parameters and in the comparative between methods, and we don’t want to do
unnecessary papers, that makes the reading more fluid.

Previous the study of the parameters, we will comment a few things about how works our algorithms.
GRASP tries to get better solutions by changing the element of the solution (local search) and our
initial solution is, as its name told us, a greedy randomize. The start solution of the other algorithm
is a greedy one and later we use Tabu Search which consists on get one element of the solution and
changes it to a better one, if we can’t get a better one then we change it to the best of the worst,i.e.,
we get the element with the higher value. The objective of worsen is to get a new space of solutions
and try to improve our solution in this new space.

2 Calibration of the parameters

Both algorithms have parameters. In the first method we have the parameter α which defines the list
of candidates in the neighborhood of the solution. α with the randomize to get our different solutions.
We have α ∈ [0, 1], if we put α = 0 we get a randomize algoritm and with α = 1 we get a random
element and then we use the greedy construction to get the others elements of the solution. We are
looking for the best α for the maximum diversity problem.

In the same way, in Tabu Search we have the tenure as a parameter. This parameter tells us with ele-
ment can be selected again for adding it in our solution, this is why it’s very important to determinate
the value of this parameter. First of all we are going to determinate the parameter α of the GRASP
and secondly the tenure of Tabu Search. We implement two methods, first and best in the Tabu Search
so, we need to determinate the tenure for both algorithms. The algorithm Tabu first does the same as
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Tabu seach, we try to improve the solution by change elements of the solution, if we find some element
we change it and we doesn’t mine if it only improve 1 or 2 points in the objective function (we will see
that in some problems this algorithm is not the best), the Tabu best consist of explore all the possibles
neighborhood and we don’t improve our solution until we don’t explore all the elements and when
we see all the elements we improve with the best of them (if we can’t improve we get the best of the
worse like we have said), as you can see this algorithm has more computational time than the other one.

We let two minutes for each example, for each algorithm and for each α, tenure that we have tried. In
our statistical analysis we are aware that we only have eight examples and we know our limitations.

2.1 GRASP and its parameter α

The values of the objective function has been taken in the following table:

α Amparo Borja Daniel Emilio Jose Maria Jesús Raquel Virginia

0.5 21461 21453 21412 21684 21503 21513 21676 21426

0.6 21553 21481 21406 21684 21487 21677 21685 21750

0.7 21793 21660 21697 21684 21577 21783 21818 21518

0.8 21783 21816 21735 21942 21952 21885 21884 21730

0.9 22080 22118 21895 22045 21951 22035 22008 21910

Table 1: 2 minutes for each example to get our α

In our statistical analysis, the response variable and the factor of study are the following:
Response variable (r.v.): value of the objective function in pur algorithm GRASP.
Factor: α
We answer the question: There is any significant difference between the mean of the r.v. for our
chosen α? We will have done the statistical analysis with software R. Our statistical study will divide
in two parts: 1) Graphic representation and numeric data and 2) hypothesis contrasting.

2.1.1 Graphic representation and numeric data

We are going to see in the next code in R (the graphic representation will be done by a box plot).

NUMERIC REPRESENTATION

Amp=c(21461,21553,21793,21783,22080)
Bor=c(21453,21481,21660,21816,22118)
Dan=c(21412,21406,21697,21735,21895)
Emi=c(21684,21684,21684,21942,22045)
Jos=c(21503,21487,21577,21952,21951)
Mar=c(21513,21677,21783,21885,22035)
Raq=c(21676,21685,21818,21884,22008)
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Vir=c(21426,21750,21518,21730,21910)
datos=cbind(Amp,Bor,Dan,Emi,Jos,Mar,Raq,Vir)
rownames(datos)=c(”.5”,”.6”,”.7”,”.8”,”.9”)
datos<−t(datos)

#mean
medias<−apply(datos,2,mean) #mean for each alpha

#summary
repnum=apply(datos,2,summary) #NUMERIC REPRESENTATION
varianza<−apply(datos,2,var)
std=varianzaˆ(1/2) #standard deviation for each alpha

We get the next outputs:

> means
.5 .6 .7 .8 .9

21516.00 21590.38 21691.25 21840.88 22005.25

> repnum
.5 .6 .7 .8 .9

Min. 21412.00 21406.00 21518.00 21730.00 21895.00
1st Qu. 21446.25 21485.50 21639.25 21771.00 21940.75
Median 21482.00 21615.00 21690.50 21850.00 22021.50
Mean 21516.00 21590.38 21691.25 21840.88 22005.25
3rd Qu. 21553.75 21684.25 21785.50 21899.25 22053.75
Max. 21684.00 21750.00 21818.00 21952.00 22118.00

> std
.5 .6 .7 .8 .9

106.84568 124.63884 106.21239 87.71128 80.12802

Graphic representation

#Box plot
par(mfrow=c(1,5))
boxplot(datos [,1], xlab=”alpha=.5”, ylab=”f.o.”,ylim=c(21400,22200))
boxplot(datos [,2], xlab=”alpha=.6”, ylab=”f.o.”,ylim=c(21400,22200))
boxplot(datos [,3], xlab=”alpha=.7”, ylab=”f.o.”,ylim=c(21400,22200))
boxplot(datos [,4], xlab=”alpha=.8”, ylab=”f.o.”,ylim=c(21400,22200))
boxplot(datos [,5], xlab=”alpha=.9”, ylab=”f.o.”,ylim=c(21400,22200))

We have got:
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in which we can see that α = 0.9 We can see, and our data tell that, α = 0.9 is the best of all.It is
also remarkable that the biggest interquartile range is in α = 0.6, that means that the data has more
diversity between them.

2.1.2 Hypothesis contrasting

Now we will have done the hypothesis contrasting, which our null hypothesis H0 is µ0.5 = µ0.6 =
µ0.7 = µ0.8 = µ0.9, and our alternative hypothesis HA is that there are differences between the means.
With our ANOVA’s knowledge, we can apply it because our data don’t have the conditions for the
applicability, for example, we don’t have independence between variables because we share examples.
We should use a non parametric contrasting like the Test of Friedman o Kruskal-Wallis. We are in
front of a multiple contrasting with the same means. We are going to see it in the next script of R.

friedman.test(data) #test no parametrico

Friedman rank sum test

data: datos
Friedman chi−squared = 26.051, df = 4, p−value = 3.09e−05

p-value = 3.09e− 05 < 0.5 we have enough evidence with 95% that we can’t assume that the means
are the same. Moreover, the test finds enough evidences between at least in four groups.

Joint it with the graphic description, numeric description and the test, we have determined that our
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best α is 0.9. We wanted to use (and we tried) a comparation post-hoc for the test of Friedman, we
tried the test of range with sing of Wilcoxon pairwise.wilcox.test( paried = TRUE ) or Tukey’s range
test: in R with the function fiendmanmc() the packege pgirmess, but we need the knowledge about
non parametric methods, because we haven’t studied it in the degree so, we don’t know how to use it.

2.2 Tabu Search (First) and its parameter tenure.

We have studied forty tenure (from 1 to 40) for every Tabu (First and Best). The output is a big
table so we have chosen the best of them to let you see how it works. In Tabu First if we choose
tenures bigger than ten, our solution doesn’t improve so, the best solution was the greedy. Then we
choose the first ten tenure to show in the paper.

tenure Amparo Borja Daniel Emilio Jose Maria Jesús Raquel Virginia

1 20988 21249 21193 20796 21304 21324 21293 21128

2 21267 20926 21275 21310 21174 21032 21071 21008

3 21121 21136 21088 21111 21081 20861 21207 21023

4 21006 20970 20958 20999 21049 20918 21076 20983

5 20829 20766 20819 20806 21049 20807 21139 20727

6 20653 20814 20719 20790 21049 20791 21028 20689

7 20606 20734 20610 20790 21049 20791 20889 20721

8 20583 20717 20610 20790 21049 20791 20734 20568

9 20575 20717 20610 20790 21049 20791 20651 20545

10 20575 20717 20610 20790 21049 20791 20728 20535

Table 2: 2 minutes of computation for every example.

In our statistical analysis, the response variable and the factor of study are the following.

Response variable (r.v.): value of the objective function in our Tabu First algorithm.
Factor: tenure We answer the question: There is any significant difference between the mean of the
r.v. for our chosen α? We will have done the statistical analysis with software R. Our statistical study
will divide in two parts: 1) Graphic representation and numeric data and 2) hypothesis contrasting.

2.2.1 Graphic and numeric representation

We are going to see it in the next script of R (the graphic representation will be done by a box plot).
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Numeric representation.

Amp=c(20988, 21267, 21121, 21006, 20829, 20653, 20606, 20583, 20575, 20575)
Bor=c(21249, 20926, 21136, 20970, 20766, 20814, 20734, 20717, 20717, 20717)
Dan=c(21193, 21275, 21088, 20958, 20819, 20719, 20610, 20610, 20610, 20610)
Emi=c(20796, 21310, 21111, 20999, 20806, 20790, 20790, 20790, 20790, 20790)
Jos=c(21304, 21174, 21081, 21049, 21049, 21049, 21049, 21049, 21049, 21049)
Mar=c(21324, 21032, 20861, 20918, 20807, 20791, 20791, 20791, 20791, 20791)
Raq=c(21293, 21071, 21207, 21076, 21139, 21028, 20889, 20734, 20651, 20728)
Vir=c(21128, 21008, 21023, 20983, 20727, 20689, 20721, 20568, 20545, 20535)
datos=cbind(Amp,Bor,Dan,Emi,Jos,Mar,Raq,Vir)
rownames(datos)=c(”1”,”2”,”3”,”4”,”5”,”6”,”7”,”8”,”9”,”10”)
datos<−t(datos) #traspuesta

#mean
medias<−apply(datos,2,mean) #medias para cada tenure

#summary
repnum=apply(datos,2,summary)
varianza<−apply(datos,2,var)
std=varianzaˆ(1/2)

We have got the next outputs:

> means
1 2 3 4 5 6 7 8 9 10

21159.38 21132.88 21078.50 20994.88 20867.75 20816.62 20773.75 20730.25 20716.00 20724.38
> repnum

1 2 3 4 5 6 7 8 9
Min. 20796.00 20926.00 20861.00 20918.00 20727.00 20653.00 20606.00 20568.00 20545.00
1st Qu. 21093.00 21026.00 21066.50 20967.00 20796.00 20711.50 20693.25 20603.25 20601.25
Median 21221.00 21122.50 21099.50 20991.00 20813.00 20790.50 20762.00 20725.50 20684.00
Mean 21159.38 21132.88 21078.50 20994.88 20867.75 20816.62 20773.75 20730.25 20716.00
3rd Qu. 21295.75 21269.00 21124.75 21016.75 20884.00 20867.50 20815.50 20790.25 20790.25
Max. 21324.00 21310.00 21207.00 21076.00 21139.00 21049.00 21049.00 21049.00 21049.00

10
Min. 20535.00
1st Qu. 20601.25
Median 20722.50
Mean 20724.38
3rd Qu. 20790.25
Max. 21049.00
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> std
1 2 3 4 5 6 7 8 9

184.17068 143.25246 102.23502 50.25773 145.39282 147.66849 145.85879 156.53366 163.25878
10

162.76709

We see that the best tenures are the smallest ones because it has a bigger mean.
GRAPHIC REPRESENTATION

#Box plot
par(mfrow=c(1,5))
boxplot(datos [,1], xlab=”tenure=1”, ylab=”f.o.”,ylim=c(20530,21350))
boxplot(datos [,2], xlab=”tenure=2”, ylab=”f.o.”,ylim=c(20530,21350))
boxplot(datos [,3], xlab=”tenure=3”, ylab=”f.o.”,ylim=c(20530,21350))
boxplot(datos [,4], xlab=”tenure=4”, ylab=”f.o.”,ylim=c(20530,21350))
boxplot(datos [,5], xlab=”tenure=5”, ylab=”f.o.”,ylim=c(20530,21350))

par(mfrow=c(1,5))
boxplot(datos [,6], xlab=”tenure=6”, ylab=”f.o.”,ylim=c(20530,21350))
boxplot(datos [,7], xlab=”tenure=7”, ylab=”f.o.”,ylim=c(20530,21350))
boxplot(datos [,8], xlab=”tenure=8”, ylab=”f.o.”,ylim=c(20530,21350))
boxplot(datos [,9], xlab=”tenure=9”, ylab=”f.o.”,ylim=c(20530,21350))
boxplot(datos [,10], xlab=”tenure=10”, ylab=”f.o.”,ylim=c(20530,21350))

We have got:
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We observe that the biggest tenure has worse results.
The tenure 1 and 2 seems to be the best tenure for our tabu, because with them we obtain the best
value of our objective function.
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2.2.2 Hypothesis contrasting.

Now we will have done the hypothesis contrasting, which our null hypothesis H0 is µ1 = µ2 = µ3 =
µ4 = µ5 = µ6 = µ7 = µ8 = µ9 = µ10, and our alternative hypothesis HA is that there are differences
between the means. With our ANOVA’s knowledge, we can apply it because our data don’t have the
conditions for the applicability, for example, we don’t have independence between variables because
we share examples. We have to use a non parametric contrasting like the Test of Friedman o Kruskal-
Wallis. We are in front of a multiple contrasting with the same means. We are going to see it in the
next script of R.

> friedman.test(datos) #non parametric test

Friedman rank sum test

data: datos
Friedman chi−squared = 61.511, df = 9, p−value = 6.85e−10

p-value = 6.85e− 10 < 0.5 we have enough evidence with 95% that we can’t assume that the means
are the same. Moreover, the test finds enough evidences between at least nine groups.
Joint it with the graphic description, numeric description and the test, we have determined that our
best tenure for the Tabu First is 1.

2.3 Tabu Search (Best) and its parameter tenure.

We have studied forty tenure (from 1 to 40) the same as Tabu First. The output is a big table so we
have chosen the best of them to let the reader see how it works.

> means
[1] 21033.25 21008.62 21063.25 21087.12 21040.12 21172.12 21219.25 21184.12 21198.25

[10] 21205.25 21217.88 21179.62 21215.38 21182.62 21180.75 21147.50 21155.00 21195.00
[19] 21192.88 21155.75 21192.88 21153.50 21215.38 21176.25 21163.62 21186.00 21198.25
[28] 21148.88 21137.50 21210.38 21154.12 21152.00 21160.62 21153.12 21159.75 21189.38
[37] 21102.25 21135.12 21120.88 21136.38
> order(means)

[1] 2 1 5 3 4 37 39 38 40 29 16 28 32 34 22 31 17 20 35 33 25 6 24 12 15 14 8 26
[29] 36 19 21 18 9 27 10 30 13 23 11 7

Our better tenures were: 7, 9, 10, 11, 13, 18, 21, 23, 27, 30; then our table will have the best ten tenure
that we represent it as shown:
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tenure Amparo Borja Daniel Emilio Jose Maria Jesús Raquel Virginia

7 21218 21367 21217 21293 21107 21022 21323 21207

9 21151 21362 21224 21158 21062 21211 21167 21251

10 21121 21288 21152 21239 21161 21121 21370 21190

11 21182 21266 21188 21325 21170 21140 21257 21215

13 21153 21198 21156 21344 21092 21209 21325 21246

18 21194 21182 21082 21274 21243 21121 21363 21101

21 21184 21223 21040 21260 21164 21114 21273 21285

23 21250 21170 21320 21305 21050 21123 21214 21291

27 21322 21326 21065 21185 21247 21085 21185 21171

30 21233 21108 21099 21379 21331 21148 21124 21261

Table 3: 2 minutes for every example.

In our statistical analysis, the response variable and the factor of study are the following:
Response variable (r.v.): value of the objective function in our Tabu Best.
Factor: tenure
We answer the question: There is any significant difference between the mean of the r.v. for our
chosen tenure? We will have done the statistical analysis with software R. Our statistical study will
divide in two parts: 1) Graphic representation and numeric data and 2) hypothesis contrasting.

2.3.1 Graphic representation and numeric data

We are going to see it in the next script of R (the graphic representation will be done by a box plot).
NUMERIC REPRESENTATION

datosb=cbind(datos[,7],datos [,9], datos [,10], datos [,11], datos [,13], datos [,18], datos [,21], datos [,23],
datos [,27], datos [,30])
rownames(datosb)=c(”Amp”,”Bor”,”Dan”,”Emi”,”Jos”,”Mar”,”Raq”,”Vir”)
colnames(datosb)=c(”7”,”9”,”10”,”11”,”13”,”18”,”21”,”23”,”27”,”30”)

#means
medias<−apply(datos,2,mean)

#summary
repnum=apply(datos,2,summary) #NUMERIC REPRESENTATION
varianza<−apply(datos,2,var)
std=varianzaˆ(1/2)

We have got the following tables:
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> means
7 9 10 11 13 18 21 23 27 30

21219.25 21198.25 21205.25 21217.88 21215.38 21195.00 21192.88 21215.38 21198.25 21210.38
> repnum

7 9 10 11 13 18 21 23 27
Min. 21022.00 21062.00 21121.00 21140.00 21092.00 21082.00 21040.00 21050.00 21065.00
1st Qu. 21182.00 21156.25 21144.25 21179.00 21155.25 21116.00 21151.50 21158.25 21149.50
Median 21217.50 21189.00 21175.50 21201.50 21203.50 21188.00 21203.50 21232.00 21185.00
Mean 21219.25 21198.25 21205.25 21217.88 21215.38 21195.00 21192.88 21215.38 21198.25
3rd Qu. 21300.50 21230.75 21251.25 21259.25 21265.75 21250.75 21263.25 21294.50 21265.75
Max. 21367.00 21362.00 21370.00 21325.00 21344.00 21363.00 21285.00 21320.00 21326.00

30
Min. 21099.00
1st Qu. 21120.00
Median 21190.50
Mean 21210.38
3rd Qu. 21278.50
Max. 21379.00
> std

7 9 10 11 13 18 21 23 27
113.19862 87.68083 88.11640 60.78871 86.58594 95.63323 85.20972 95.49860 96.86920

30
107.10200

We can see that tenure equal to 7 (Fred Glover said that seven is the magic number) is the one
with the biggest mean, and the others are 11, 23, 13, 30 y 10 (all of them hit the score of 21200 in the
objective function).
Graphic representation

#Box plot
par(mfrow=c(1,5))
boxplot(datosb [,1], xlab=”tenure=7”, ylab=”f.o.”,ylim=c(21020,21380))
boxplot(datosb [,2], xlab=”tenure=9”, ylab=”f.o.”,ylim=c(21020,21380))
boxplot(datosb [,3], xlab=”tenure=10”, ylab=”f.o.”,ylim=c(21020,21380))
boxplot(datosb [,4], xlab=”tenure=11”, ylab=”f.o.”,ylim=c(21020,21380))
boxplot(datosb [,5], xlab=”tenure=13”, ylab=”f.o.”,ylim=c(21020,21380))

par(mfrow=c(1,5))
boxplot(datosb [,6], xlab=”tenure=18”, ylab=”f.o.”,ylim=c(21020,21380))
boxplot(datosb [,7], xlab=”tenure=21”, ylab=”f.o.”,ylim=c(21020,21380))
boxplot(datosb [,8], xlab=”tenure=23”, ylab=”f.o.”,ylim=c(21020,21380))
boxplot(datosb [,9], xlab=”tenure=27”, ylab=”f.o.”,ylim=c(21020,21380))
boxplot(datosb [,10], xlab=”tenure=30”, ylab=”f.o.”,ylim=c(21020,21380))
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We have obtained:
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We can observe that the tenure equal to 7 has minimum value between all the tenure, however it is the
one with have the best mean if we join all the examples together. The worst thing with the number 7,
as we can see, is the diversity of its solutions. However, the number 10, although doesn’t have better
mean as 7, it extrems aren’t be very striking.
It seems that tenure equal to 7 or 10 are one of the best of the tenure that we can find.

2.3.2 Hypothesis contrasting.

Now we will have done the hypothesis contrasting, which our null hypothesis H0 is µ7 = µ9 = µ10 =
µ11 = µ13 = µ18 = µ21 = µ23 = µ27 = µ30, and our alternative hypothesis HA is that there are
differences between the means. With our ANOVA’s knowledge, we can apply it because our data
don’t have the conditions for the applicability, for example, we don’t have independence between
variables because we share examples. We should use a non parametric contrasting like the Test of
Friedman o Kruskal-Wallis. We are in front of a multiple contrasting with the same means. We are
going to see it in the next script of R.

> friedman.test(datosb) #non parametric test

Friedman rank sum test

data: datosb
Friedman chi−squared = 3.091, df = 9, p−value = 0.9606

p-value = 0.9606 > 0.05 we don’t have enough evidence so we can’t reject the null hypothesis that
our means are the same.
Joinly with graphic and numeric description and with the test, we can determinate that our best value
of tenure for the Tabu Best is 7.
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3 Comparative between GRASP and TABU.

In the next section we are going to discus our target from the beggining, see what is the best algo-
rithms, GRAPS or Tabu Search (First or Best). The data of the different examples are based on
the election of the parameters α and two tenures which we have calibrated and we laid down in the
following table (we need to remember that we got α = 0.9, Tabu First tenure equal to 1 and Tabu
Best tenure equal to 7). In our statistical analysis, the response variable and the factor of study are

Algorithm Amparo Borja Daniel Emilio Jose Maria Jesús Raquel Virginia

GRASP 22080 22118 21895 22045 21951 22035 22008 21910

Tabu First 20988 21249 21193 20796 21304 21324 21293 21128

Tabu Best 21218 21367 21217 21293 21107 21022 21323 21207

Table 4: The 3 algorithms with their better parameters.

the following:

Response variable (r.v.): value of the objective function with our 3 algorithms.
Factor: Methods
We answer the question: There is any significant difference between the mean of the r.v. between
our 3 algorithms? We will have done the statistical analysis with software R. Our statistical study
will divide in two parts(as always): 1) Graphic representation and numeric data and 2) hypothesis
contrasting.

3.0.1 Graphic and numeric representation

We are going to see it in the next script of R (the graphic representation will be done by a box plot).

REPRESENTACIÓN NUMÉRICA

Amp=c(22080,20988,21218)
Bor=c(22118,21249,21367)
Dan=c(21895,21193,21217)
Emi=c(22045,20796,21293)
Jos=c(21951,21304,21107)
Mar=c(22035,21324,21022)
Raq=c(22008,21293,21323)
Vir=c(21910,21128,21207)
datos=cbind(Amp,Bor,Dan,Emi,Jos,Mar,Raq,Vir)
rownames(datos)=c(”Grasp”,”T. First”,”T. Best”)

datos<−t(datos) #traspuesta
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#means
medias<−apply(datos,2,mean) #medias para cada metodo

#summary
repnum=apply(datos,2,summary)
varianza<−apply(datos,2,var)
std=varianzaˆ(1/2)

We have got the following tables:

> medias
Grasp T. First T. Best

22005.25 21159.38 21219.25
> repnum

Grasp T. First T. Best
Min. 21895.00 20796.00 21022.00
1st Qu. 21940.75 21093.00 21182.00
Median 22021.50 21221.00 21217.50
Mean 22005.25 21159.38 21219.25
3rd Qu. 22053.75 21295.75 21300.50
Max. 22118.00 21324.00 21367.00
> std

Grasp T. First T. Best
80.12802 184.17068 113.19862

As we can see the best algorithm is the GRASP. It is the best with differences, in the conclusions we
say why that can happen.

Graphics representation.

#Box plot
par(mfrow=c(1,3))
boxplot(datos [,1], xlab=”Grasp”, ylab=”f.o.”,ylim=c(20790,22120))
boxplot(datos [,2], xlab=”T. First”, ylab=”f.o.”,ylim=c(20790,22120))
boxplot(datos [,3], xlab=”T. Best”, ylab=”f.o.”,ylim=c(20790,22120))
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We have obtained:
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Again, we see that the GRASP algorithm is better than any Tabu Search. From the other side, Tabu
Best has shown better results than Tabu First. We are going to compare this two by an hypothesis
contrasting.

3.0.2 Hypothesis contrasting.

Now, we will have done the hypothesis contrasting, which our null hypothesis H0 isµG = µTF = µTB,
and our alternative hypothesis HA is that there are differences between the means, as the previous
ones. We are going to use a non parametric contrasting like the Test of Friedman o Kruskal-Wallis.
We are in front of a multiple contrasting with the same means. We are going to see it in the next
script of R.

> friedman.test(datos)

Friedman rank sum test

data: datos
Friedman chi−squared = 13, df = 2, p−value = 0.001503

p-value = 0.001503 < 0.05 we have enough evidence with 95% that we can’t assume that the means
are the same.
Jointly with graphic and numeric description and with the test, we can determinate that GRASP has
been better than Tabu Search. We are going to prove why in these examples GRASP is better than
any Tabu that we ran.
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4 Conclusions and conjecture.

Our algorithm GRASP,which we have done with our teacher Rafael Mart́ı, has resulted to be the
winner. One possibility is that we have a good implementation of the construction of the solution and
a good implementation of the local search.

However, with the same computational time (two minutes), Tabu Search First can’t hit the score of
21000 and the GRASP was near to 22000. We thought that this can happen because our algorithm
get worse more time that it improve. It can be because Tabu Search First works like that. It try
to improve, if we get an element which improves the value of the solution, we add it to the new
solution without taken on count that we can get better improves if we explore more elements of the
neighborhood.

Then, we are going to check our conjecture: How many time Tabu First get worse and improve in an
example with different values of the parameter tenure?
For this question we have designed a code with shows a counter which will give us the number of times
that our algorithm gets worse and our algorithm improves.
Later we ran it in many examples and we have seen that our Tabu First improve more times than it
get worse, then, what is wrong with the algorithm?
For answer this questions we designed a code which show us how many times our problem improve,
or get worse the objective function with a determinate number, i.e., we are looking for the improves
whom increments the objective function in a determinate number (for example, 10).
We got what we were looking for, Tabu First improve more times but when it improve, it is in a little
quantities (this is the problem that we get with Tabu First and this is why Tabu Best is better in
this examples).However, when it get worse, it take bigger quantities, we represent this in the following
table (we only let it 30 seconds of computation)

We denote M+i as the number of times that the algorithm improve more than i units the objective
function and we denote E+i as the number of time that the algorithm get worse more than i units
the objective function.

Tenure Improves Worsening M+20 E+20 M+50 E+50 M+90 E+90

2 417130412 392410467 208503 173990 170784 154659 86272 119104

3 534696743 370918863 292731 200510 152824 167668 97066 106448

4 569957079 375361296 261709 200469 158381 155252 82677 103590

Table 5: Improves and Worsening in the example ”Amparo”

As we had said, there are more improves than worsening for the tenure equal to 2, 3 and 4 as table
shows us. The improves are small amounts as we can see in the column E + 20, and the worsenings
are bigger.
In essence: There are more improve than worsening but the improve doesn’t contribute very much in
the objective function while the worsening has a big contribution in the objective function (we can see
in the column E + 90 which means that there are 119104 worsening which get the objective function
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decrease more than 90 pints of value while improve there are 86272). That’s why our algorithm doesn’t
get better solutions. Our conjecture has been solved.
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