
Final Year Project Report

General Game Player

James Keating

A thesis submitted in part fulfilment of the degree of

BSc. (Hons.) in Computer Science

Supervisor: Dr. Arthur Cater

UCD School of Computer Science

University College Dublin

April 3, 2018



Project Specification

0.1 General Details

Project Title General Game Player
Academic Supervisor: Dr. Arthur Cater
Project Mentor: Dr. Arthur Cater
Subject: Game AI
Project Type: Design and Implementation
Software Requirements: Java or other HLL
Hardware Requirements: Students own laptop or PC
Preassigned: Yes

0.2 Project Description

The idea of a general game player (GGP) is the rules of a game can be expressed in a formal
logic-programming style, and a deductive database can apply rules of inference to determine the
legality and outcome of moves. Furthermore, the inference process may be able to support the
automatic selection of good moves, even for a game that the GGP has neither played before nor
been coached in.

The aim of the project is to create a GGP capable of accepting inputs in the standardized GGP
language, and use them to support play of several games whose rules have been expressed in this
language. It should be able to identify all moves that are possible at a moment in play, to validate
or reject moves chosen by a human player, and make choices (possibly dreadful choices) of moves
of its own.

Ideally the GGP should be able to create, from a set of rules for a 2-player 2-D game of perfect
information, an interface through which the range of choices can be presented to a human op-
ponent, through which the opponent can select a move, and through which an opponent can be
informed of the state of a game in a reasonably natural way (not a set of logic expressions but a
more diagrammatic presentation).
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0.3 Mandatory Goals

• Develop a parser for the standard GGP language, without extensions.

• Develop a simple deductive database system of standard design.

• Express in GGP language the rules of at least three little-known 2-D games, for example
from the opening chapters of Winning Ways For Your Mathematical Plays.

• Develop the inferential mechanism of the deductive database system to be able to generate
exhaustive lists of possible moves for legal positions in at least two of those games.

• Provide a way for a users text input to be validated or rejected by attempting to match it
against the legal-move list.

• Provide for a player to input moves for both sides in at least one 2-player game, determining
when the game is finished and (if applicable) which side wins.

0.4 Discretionary Goals

• Create descriptions of at least six little-known 2-D games.

• Provide for move list generation, user move validation, and play to completion of all those
games.

• Develop an interface which can display to a user the moves available, can accept an in-
put move by mouse selection from the list, and for 2-D games based on a regular finite
rectangular grid can display graphically the state of a game.

0.5 Exceptional goals

• Extend the deductive database to handle rules of games with a chance element.

• Extend the interface to handle graphical display strictly based on the formal statement of
game rules of at least one 2-D game that is not based on a rectangular grid.

• Implement game state representations using propositional networks.
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Abstract

General Game Playing (GGP) is the playing of a wide variety games you may have never seen
before, by being told nothing but the rules of the game at run time. This sets it apart from
traditional specific game players, like the famous chess player Deep Blue. Deep Blue can beat
the world chess champion at chess however, it has absolutely no idea how to play checkers. It
is designed for one particular game and cannot adapt to rule changes, and certainly cannot play
entirely different games. The goal of this project is to create a program that will play a wide
variety of 2d games given descriptions of their rules without the creator of the program having
ever known of the games. This report will cover the design and implementation of this project,
as well as the background research performed and reflections on the outcome of the project.
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Chapter 1: Introduction

General game playing (GGP) programs are designed to play games that both they and their
programmer have never seen before, by being given only the game rules at run time. This is
something humans are very good at. If someone were to hand you a rule book for a relatively
simple new game they have made and ask you to play, most people would be able to play legally
without much difficulty, possibly even well. However, this remains a challenging task for computer
programs. Though humans have been surpassed by AI in most games today, in this area of general
game playing humans still reign supreme.

There is a long and storied history of humans programming artificial game players, ranging from
the Mechanical Turk in the 1770s all the way up to the famous chess-playing program Deep Blue
that has beaten renowned world chess champions. The field of Artificial intelligence has focused
on specific game playing programs for a long time. Such programs have far surpassed the best
human opponents, in games ranging from Connect Four to Chess and more recently Go. Yet,
such programs are helpless when you change the rules of the game or present them with entirely
new games.

Specific game playing programs traditionally have the rules of the game hard-coded into them
and heuristics which allow them to evaluate how good a particular state of the game is. These
programs can search a game tree to examine many sequences of future moves, predicting where
the game will go and choosing their moves in order to eventually reach states with high heuristic
values. If everything goes according to plan, this continual search for states of high value, will
allow the programs to constantly improve their position and ultimately win the game.

Though these specific game players are very effective, it is highly questionable whether they are
actually intelligent. The real work and analysis used to understand the game and its strategy
is done long before the program ever begins running. The players often simply follow strategies
and heuristics that their original programmers devised. The systems themselves might as well be
tele-operated. This shows the original programmers understand the game, but it doesn’t show
that the players understand the game in any meaningful way.

General game playing aims to build programs which can play any arbitrary game given its rules.
The programs are written without knowing what games they are going to play in advance, so
they have to be able to play any game that they are presented with. Go players can only play go;
Chess players can only play chess; but a general game playing program can play any game.
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1.1 How Do General Game Players Work

The three core components of any GGP program are the game representation, search and evalu-
ation.

Game Representation:Since game rules cannot be coded before run time as the player has no
knowledge of the game, players must be able to take a description of a game as an input and
represent all the possible game positions based on it. Most modern GGP do this using the game
description language (GDL). It is the most well-known effort at standardizing GGP AI, and is
generally seen as the standard for GGP systems. GDL descriptions are interpreted by the player
often as a state machine or a propositional network from which it can generate legal moves, apply
moves, detect the end of the game, determine the score for each player. GDL is the language
used for this project and the descriptions are interpreted as a propositional network.

Search And Evaluation Search refers to the ability to think/look ahead in the game. Evaluation
refers to the method for assessing the pros and cons of each game state which arises during the
search. The main challenge faced by the players in this area since they are not just focused on one
game, is that the game-specific knowledge necessary for high-level play, be it for the search or the
evaluation of game states, must be discovered during playing of the program itself and cannot be
hard coded before by the programmer. Traditional players achieve this using minimax based game-
tree search augmented with an automatically learned heuristic evaluation function [1]. Minimax
works well for 2-player games, particularly zero sum games. However, many modern general game
players have started to use variants of the Monte Carlo search instead [2]. For this project a Monte
Carlo Tree Search based on a variant of UCT (Upper Confidence bounds applied to Trees) has
been implemented for move selection.

1.2 Aims And Scope Of Project

This was a self proposed project with the aim of building a general game player which could play
a wide variety of 2-d games described in the standard game description language used for the
international general game playing competition. There are some limitations to what games can
be described which are covered in section 2.2.

This project aimed to implement the player by parsing GDL text files to create a propositional
network representing the game, and choose valid legal moves for each game state using UTC
(Upper Confidence bounds applied to Trees)
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1.3 Modification To Initial Project Specification

In the course of this project one of the exception goals in the project specification was modified.
This was done in accordance with the project supervisor Dr Arthur Cater. The following goal was
changed to more aptly reflect the aims and goals of this project:

Extend the interface to handle graphical display strictly based on the formal state-
ment of game rules of at least one 2-D game that is not based on a rectangular grid.
⇒
Implement game state representations using propositional networks.

There were two primary factors for this change.

• Initially a theorem prover was intended to be implemented to determine the facts which
represented the state of a game. However, in the course of implementing the theorem
prover it became apparent that it would not be efficient enough to process game states
with the desired speed. It was at this point, the alternative approach of implementing a
propositional network was explored. The implementation of this network became a major
focus and goal of the project and as such it was deemed appropriate to reflect this in the
project respecification.

• The GUI component of this project was viewed as a secondary goal to the actual game
playing program itself. By changing the goal related to the graphical component of the
project to a goal relating to the playing of games the focus of the project was better
represented by the project specification.

1.4 Report Structure

There are six chapters remaining in this report. Below you will find an outline of the content
covered in each chapter order by the chapter number.

2. Background Research: this chapter covers the research which was conducted prior to the
beginning of the implementation of the general game player. The approach and design used
for this project, has been informed and heavily influenced by the findings of this research.

3. Project Approach: this chapter will cover the approach taken to complete this project. It
will discuss all of the major steps taken and the reasons for those steps.

4. Design Aspects: this chapter will cover how each of the major components of the general
game player were designed and how they work.

5. Detailed Design & Implementation: this will provide an in depth explanation of specific
components of systems explored at a higher level in chapter 4. These are components which
have been implemented in an interesting or non-standard manner.

6. Testing & Evaluation: this chapter covers the testing this software has undergone to
ensure it is working as intended and to measure its performance.

7. Conclusion & Future Work: this covers the overall achievements of the project and the
weaknesses that could be expanded upon in the future.
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Chapter 2: Background Research

2.1 Initial Research For Project Specification

As previously stated this was a self proposed project. As such this section will cover the initial
research which led to the specification and proposal of the General Game Player project.

Research began in the field of game playing in general, looking for something of note to base this
project on. It was found that when people first started building AI to play games they thought it
would lead to a deeper understanding of human thinking, by trying to replicate the way humans
process problems and play games. However, in reality the best solutions to playing the most
heavily researched games such as chess or go were completely different to how humans approach
these games and no real insight into human thinking was gained.

This led to the thought that it would be interesting to build a game player which would more closely
emulate a human rather than use openings and heuristics pre-programmed by expert players. At
first it was considered to do this using a genetic algorithm. An AI would use it to learn to play a
game like chess or checkers, starting with no knowledge or insight but the legal moves available at
each game state. The idea was that it would teach itself to play the game. It would be learning
in the same way a human would if you gave someone a rule book and locked them in a room to
do nothing but play against themselves. However, the AI would be able to play and hence learn
so much faster than a human.

The research into this idea led to the discovery that such approaches for complex games like chess
or go would require unrealistic computational power. Although computers could play many more
games much faster than a human, with typical genetic or evolutionary approaches you would need
several thousand hours of CPU time for a single generation [3]. As computing power increases
this approach may become more feasible, but right now this would be very difficult.

In spite of this the idea of playing a game with no prior knowledge was still intriguing. Research
into other non evolutionary ways to achieve this was continued. This led to discovering the field
of general game playing. Stanford’s general game playing project was the first material which was
explored. The Stanford Logic Group have been the most successful at standardizing general game
playing so that everyone uses the same language for defining the rules of games they play. The
General Game Playing competitions at the annual Association for the Advancement of Artificial
Intelligence Conference even use their language now.

After reviewing the course material for Stanford’s general game playing course and the book
Synthesis Lectures on Artificial Intelligence and Machine Learning [4] it was decided that building
a general game player would be an appropriate task for this final year project.
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2.2 Game Descriptions

In order to build a general game player it was crucial to know how the rules of the games to be
played are going to be represented. Therefore the first task of this project was to research and
evaluate the best approach to describing games.

There are three major approaches to writing game descriptions Metagamer, Zillions of Games,
and the Game Description language (GDL). However, both Metagamer and Zillions of Games
developed in the 1990s have become rather outdated. Today GDL has become the standardized
language used for GGP and is even used in the AAAI’s annual general game playing competition,
which is the biggest GGP competition in the world. The reason Metagamer and Zillions of Games
have become outdated is not due to them being particularly worse than GDL rather it is due to
Stanford driving the general game playing community to use a common language. For this reason
GDL was used for this project and researched in depth.

GDL describes the state of a game in terms of a set of initially true facts and a set of logical rules.
It then uses the set of logical rules to determine the set of facts which will be true in the next
state based on what is currently true and the moves of the players. It also contains constructs for
distinguishing the initial state of the game, goal states and terminal states. In this way, a game
description in GDL defines a state machine.

This means given a game description in GDL, and all the moves made by all players in the game,
it is possible to completely define the set of facts true that are currently true in the game and the
facts in the next state of the game. Also it is possible to completely define the current set of legal
moves for each player and if the game is in a terminal state. An example game description which
I have documented and explained can be found in Appendix I . There are also some requirements
for games described in GDL [5]:

• Termination: all sequences of moves from the legal state must reach a terminal state in
a finite number of moves.

• Playability: every player must have at least one legal move from each non terminal state.

• Complete Information: standard GDL cannot describe games with an element of chance
or when players do not have complete information about a game state, for example the cards
in an opponent’s hand. GDL can be extended to handle this however: it requires using what
is referred to as GDL-II which has the additional keywords RANDOM and SEES.

2.3 Deductive Database

A deductive database is a finite collection of facts and rules. By applying the rules of a deductive
database to the facts in the database, it is possible to infer additional facts. Datalog is probably
the language most commonly used to specify facts, rules and queries in a deductive database [6].
For this project we instead use GDL which is itself based heavily on Datalog. The rules in a
deductive database using this language must obey two key restrictions. The first is safety. A rule
is safe if and only if every variable that appears in the head or in any negative literal in the body
also appears in at least one positive literal [7]. The second is stratified negation as these rules
have potential ambiguities. This means there are no negative arcs (there is a negative arc from
one proposition to another if and only if the former proposition appears in a negative subgoal
of a rule in which the latter proposition appears in the head of the rule) [7] in any cycle in the
dependency graph. For example X(a, b) := ¬X(b, a) contains a negative arc.
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2.4 Propositional Networks

In GGP games are traditionally represented as a state machine with a finite number of states.
Each state is a series of GDL facts and the players actions transition from one state to another.
Propositional networks, often abbreviated to propnets, are an alternative approach to representing
games. A propnet is a graph containing a node for every proposition that can be true according
to the game rules. It also contains nodes representing logic gates such as AND, OR and NOT
which are applied to the proposition nodes. These logic gates represent the propositions’ effects
on each other. Finally there are transitional nodes which act like flip flops in a circuit taking
outputs from one state and giving them as inputs in the next.

Using this approach it is possible to represent the game as a graph of propositions and actions
rather than states. The benefit of this over traditional state machines is compactness. A set of
n propositions corresponds to a set of 2N states. Thus, it is often possible to characterize the
dynamics of games with graphs that are much smaller than the corresponding state machines by
using a propnet. This can lead to dramatic performance increases. Testing performed at Stanford
on the time taken to search the entire game tree of tic-tac-toe showed a 92% reduction in run
time when using propnet representation over a standard state machine, going from 130 seconds to
10. This time was further reduced to 0.2 seconds by compiling the propnet into machine code. It
is because of the tremendous possible performance increases propositional networks can achieve,
that they have been implemented in the General Game Player project. [8].

2.5 Game Tree Search

This section focuses on how general game players actually decide on which legal move they should
make. This is done in general by looking ahead a certain number of moves into the game and
evaluating how good or bad that position in the game is. This is done for many sequences of
moves and the best move from the players current position is selected.

2.5.1 MiniMax

For many games the game tree is too large to be exhaustively searched, so instead the fixed-
depth minimax algorithm can be used. Most successful early general game players including a
number of the first winners of the AAAI’s general game playing competition used variations of
this approach. [2]

By using the minimax algorithm we make assumptions about the actions of the other players. We
assume that every other player will always perform the worst possible action for our own player.
This allows our player to make the best move based on what it is predicting its opponent will do.

This works well for specific game playing where it is easier to create a heuristic function to
determine the value of moves. Although for some games such as go this can still prove challenging.
For general game playing this heuristic evaluation of non terminal states is extremely difficult but
there are ways it can be done to varying degrees of success which are discussed in the heuristic
section.
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2.5.2 Alpha-Beta

This is a variant of the basic minimax which achieves the same results as minimax but searches
less of the game tree. This is the variant of minimax which would have been used for this project
had it eventually been decided to use a version of minimax for game tree search.

It works almost the same as minimax, however it also dynamically keeps track of the best and
worst move it has found at some point in the game. Using this it can disregard branches of the
tree which are worse than the moves it has currently found since it knows the player would never
rationally choose them as it can do something better.

Alpha-Beta Search can save a significant amount of work over full Minimax. In the best case,
given a tree with branching factor b and depth d, Alpha-Beta Search needs to examine O(bd/2)
nodes to find the maximum score instead of O(bd). This means that an Alpha-Beta player can
look ahead twice as far as a Minimax player in the same amount of time. Looked at another
way, the effective branching factor of a game in this case is sqrt(b) instead of b. It would be the
equivalent of searching a tree with just 5 branches at each node instead of 25. [9].

2.5.3 Search Depth

The previous two sections discussed how not all game trees can be searched exhaustively due to
their size. Instead an incomplete search to a certain depth is performed. However, there are a lot
of problems and questions to be answered when determining this depth. The same depth might
not make sense for two different games. Go has many more possible moves than checkers. If you
used the optimum depth for checkers on go your program would not finish in time as you would
have searched too deep and had too many moves to process. If you used the optimum depth for
Go on checkers you will not have searched as far as you could and will not get the best results.

Two potential solutions to this problem were explored in the course of this project. One approach
was to use breadth-first search instead of a depth-first search. The downside of this is it requires
a huge amount of space when done with large trees, in many cases even greater than storage
capacity of the computer. Another problem with this type of search is it cannot utilize an alpha-
beta search to reduce the search space.

Another possible solution explored was using iterative deepening to explore the game tree. This
involves repeatedly exploring the game tree at increasing depths until there is no time left. This is
somewhat wasteful as portions of the tree may be explored more than once. However, this waste
is normally limited by a small constant factor which may be reduced even further by utilizing an
alpha-beta search.

So far only searching the game tree to a uniform fixed depth has been discussed. However, it is
also possible to search the tree to variable depths. This means you explore certain sequences of
moves (branches of the game tree) more than others. For example in chess, it may be hard to
evaluate a game state unless a piece is taken. So, one could search until a piece is captured and
then evaluate the game state. That could be one move for some branches of the game tree or
much more for others.

Once again however the problem with this arises with coming up with appropriate heuristics for
evaluating all games. The next section discusses some of these heuristics which could be used.
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2.5.4 General Game Heuristics.

In GGP the games being played are not known in advance, due to this it is very difficult to evaluate
a game state as what is considered good in one game may not be good in another. A common
approach to this problem is to try to find heuristics which have merit across all games. There is
no guarantee when using heuristics like these that they will always be good. It is almost always
possible to find a game in which a general heuristic does not apply or make sense. However, it is
very often the case that these general heuristics will have merit. [10].

• Mobility: this idea is that the more options/moves available to a player the better. In
this case the heuristic would count the number of moves available to a player at a given
state. The implementation of this heuristic in particular was given much consideration for
this project but ultimately rejected.

• Focus: this is the inverse of mobility. It is the idea, that it is better to limit the number of
possible moves available to players. This allows you to search to a much greater depth in
the game tree, since there are fewer possible moves to explore. It will be possible to search
to terminal states much faster and hence, more easily identify the best move.

However, this contradicts the concept of mobility. Due to this programmers will often try
to strike a balance between the two ideas by limiting the opponent’s moves, reducing their
mobility and the search space, while still maximizing the players mobility.

• Goal Proximity: Goal proximity is a measure of how similar a given state is to a desirable
terminal state. There are many approaches to trying to compute this. Fluxplayer, the
winner of the second ever AAAI’s GGP competition used a heuristic function based on goal
proximity. They calculated the proximity to the goals or terminal states by assigning 1 if
true or else 0 to all of the atoms which made up the complex descriptions of their goals
and terminal states. They then applied standard t-norm formulas to these descriptions to
determine how true they were [11].

2.5.5 Monte Carlo

This is the search method which was implemented in this project for evaluating game states and
selecting moves. After comparing its performance with the other methods discussed in this section
the conclusion reached was that a form of Monte Carlo search would be the most effective search
based on two key points:

• It does not recognize or take into account boards, pieces, piece count or any other features
of a game that might form the basis of game-specific heuristics. The evaluation process is
based solely on the winning or losing of a game. This is something which can be applied
to virtually every game unlike the heuristics in previous sections which only apply to a lot
of games.

• It has had success in other general game playing programs. While nearly all successful early
general game players used the minimax algorithm combined with a general heuristic function
to decide their moves most modern general game players have instead started to incorporate
at least some variant of Monte Carlo search [1]. Using a variant of this approach for example
CadiaPlayer won the International General Game Playing competition three times.
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The basic idea behind the search is that it evaluates a non terminal state by ”probing” to terminal
states several times and getting the average value of those terminal states for the player. Probing
refers to making a series of random moves for each player only considering one move each so it
can do so very fast.

While this is a very powerful approach there are weaknesses:

• The Monte Carlo search does not take into account the structure of a game. For example,
it cannot recognize symmetries or independences that could substantially decrease the size
of the search space.

• Unlike the minimax algorithm it assumes opponents are playing randomly when in fact, it
is very likely they are not and will make the best moves they can. This issue is addressed
to some extent in a variation of Monte Carlo which I have implemented for this project, the
algorithm known as UCT (Upper Confidence bounds as applied to Trees).

2.5.6 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a variation of Monte Carlo search. Both variants are based
on the same principle of rapidly preforming random playouts of games to evaluate a game state.
However, they differ on how they expand the game tree.

A pure Monte Carlo search expands the game tree uniformly. The MCTS uses a more sophisticated
approach. The search biases the selection of which nodes to expand based on two factors known
as exploitation and exploration.

• Exploitation: refers to the results of previous searches. If previous searches had good
results when a node was selected it is more likely to be reselected.

• Exploration: refers to the number of times a node has been visited. The more times a
node is visited the less likely it is to be revisited.

The idea behind selecting nodes based on these two factors is to try and strike a balance between
refining the search in promising areas of the tree and exploring new areas of the tree.

These preferred nodes are more likely to be expanded and explored. In this way more promising
nodes are explored more often and deeper than others, whilst still seeking confidence that the
other moves are inferior.
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Chapter 3: Project Approach

The goal of this project was to build a general game playing machine. In order to achieve this goal
a divide and conquer style approach was taken. Four major tasks were identified which needed to
completed:

Define games → Represent game states → Play games → Display games

3.1 Defining Games

3.1.1 Defining The Language

In order to play a game, a player must at some point be told the rules of the given game. Hence,
in order to build a general game player it is essential, to in some way describe the rules of a game
to the player. This led to the need to formalize the descriptions of games which became the first
major component of this project.

In section 2.2 various approaches to describing games were researched. From that research one
approach in particular stood out: the game description language (GDL). GDL is a logical language
which can be used to describe the rules of arbitrary games provided they fulfill certain conditions
as discussed in section 2.2. This language was adopted to describe games in this project. It was
chosen primarily due to two factors:

• Documentation: of the three languages considered (Zillions of Games, Metagamer and
GDL) GDL is by far the most well documented language.

• Future Competition: GDL is used in virtually every general game playing competition
today even the AAAI’s annual competition. Using GDL gives this player the potential to
compete in these competitions in the future.

Unfortunately the standard GDL language was missing some functionality which was required to
meet all the goals of this project. This required two extensions be made to the base language:

• RANDOM: a keyword used in order to describe games of incomplete information (games
with random or unknown events).

• DrawIt: a novel keyword created specifically for this project. This is not a common exten-
sion for the GDL. It is used to describe the graphical component of games.

The rest of the definition of the language followed the standard GDL specification [5]. An example
of a documented game definition used in this project can be found in Appendix I.
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3.1.2 Building The Parser

Game descriptions were formalized in this language to be used as test cases these games can
be found in Section 6.2.1. The next step was to find a way for the player to process the game
descriptions from text files to something more meaningful.

To achieve this the text description of a game needed to be parsed by the player and stored
accordingly. To determine the type of parser which would be required the grammar below was
first formalized based on the game description language.

S → Description S
S → ε
Rule → ( Fact )
Fact → Atom Fact
Fact → Rule Fact
Fact → ε
Atom → variable | keyword | identifier

The result above is an LL(1) grammar. As such it was decided that a recursive descent parser
would be built to parse it. This decision was made as a recursive descent parser is one of the
most simple parsers to implement, while still sufficiently powerful to handle the grammar. Finally
once the game descriptions were successfully parsed and stored accordingly. The next stage of
the project was ready to begin.

3.2 Representing Game States

Once games could be described to the player, the next step was to take that information and use
it to represent each state in the game. The representation needed to tell the player everything
that it would need to know in order to play the game; the moves it could make, whose turn it
was, the number of players, if the game was in a terminal state etc.

To do this using GDL a series of facts needs to be produced. All propositions in the game
description which are true need to be identified and presented to the player. For example in the
case of a game of tic-tac-toe shown in Figure 3.1 the facts to the right of the figure are required.

Figure 3.1: Sample game state representation in GDL

Two approaches to determining these facts were attempted. The first was to use a theorem prover
and the second was to build a propositional network.
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3.2.1 Theorem Proving

The initial approach taken for this task was to build a theorem prover. The theorem prover would
programmatically examine each of the logical rules in the game description. Based on the other
rules and propositions which were currently true, it would produce a new list of facts that could
currently be proved. This new list would represent the next state of the game.

However, in the process of implementing the theorem prover it became apparent that the speed
at which it would be possible to process game states would be far slower than desired. The
algorithm used to determine the players’ moves (Monte Carlo Tree Search) requires the game to
be played out hundreds or even hundreds of thousands of times each turn to make good moves.
The theorem proving approach was proving too slow to do this in a reasonable time. So alternative
solutions were explored. The approach which was ultimately chosen was to replace the theorem
prover with a propositional network.

3.2.2 Propositional Network

When the theorem prover implemented proved to be slower than desired a propositional network
(propnet) was implemented to replace it. This decision was made based on experimentation
conducted by Micheal Genesereth [12] of Stanford University, it was concluded that game states
could be processed using a propnet much closer to the speed that was required to achieve good
gameplay in a reasonable time. In spite of the potential performance increase of propnets there
were three major drawbacks to this approach, which is why a theorem proving approach was
attempted first.

• Complexity: the implementation of a propnet is a very difficult and intensive programing
task. It was thought that the more simple theorem proving approach would be sufficient
for our player’s needs.

• Build Time: before a game can be played by this player the propnet must be built. For
more complex games such as chess or go this can take many hours. Although, games can
be played much faster than a theorem proving player once the network is built.

• Additional Description: in order to build a propnet additional information is required in
the game description than normal. The description must contain a list of the possible values
of variables within propositions. It it possible to programmatically generate these values for
small games, however it is not computationally feasible to do so for complex games.
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3.3 Move Selection

Once a propositional network representing game states had been built all the information which
was required in order to actually play the game was available to the player. It was at this stage
of the project that the logic for selecting the player’s moves was implemented.

To begin a random legal player was built. This player simply selected random legal moves each
turn. Some simple game management logic was then added to allow this player to play games to
completion against itself or a human player.

Once this infrastructure had been built and tested, the next step taken was to extend the legal
player, to select moves in an ’intelligent’ manner. There are a variety of potential approaches to
this problem. Each consists of two common components:

• Searching the game tree to determine the results of future moves.

• Evaluating the state of the game after certain moves have been made.

However, there are many ways in which these search and evaluations steps can be performed. For
this player a UCT search was used. It was selected based on several factors:

• Evaluation style: most approaches to evaluating a game state use some form of heuristic
function. This is very effective in specific game players as they can apply expert knowledge
to the game. In general game playing this is much harder as what is good in one game may
not be in another. In section 2.5.4 some possible heuristics for GGP were explored. While
these have merit in many games there are still some games where they will not. MCTS
does not rely on any heuristic function to evaluate game states. It instead uses the number
of wins and losses after a move is made. This evaluation has merit in virtually every game
which cannot be said for the other possible evaluation methods explored.

• Performance of other players: this decision was influenced by the results of other suc-
cessful general game players, in particular by looking at the winners of the AAAI’s annual
general game playing competition. These players represented the best players in the world at
the time. The first winners of this competition did not implement any form of Monte Carlo
search. The first winner to do so successfully was Cadiaplayer [1] in 2013. The Cadiaplayer
then went on to become the only player to ever win this competition 3 times. Almost all
of the winners since then have implemented some variation of the Monte Carlo search [2].

• Flexible runtime: many other searches were required to be run to completion hence needing
a fixed amount of time to choose a move. Using the UCT search any time can be allotted
to selecting a move and the search can simply terminate at the desired time. The more
time that is allocated the better the selection of moves becomes.

At first a standard Monte Carlo search was implemented. This search was then extended to what
is known as the Monte Carlo Tree Search (MCTS). The MCTS is a more sophisticated version
of the standard Monte Carlo search as discussed in section 2.5.6 This change was made due to
research which suggested it could provide a substantial performance increase [13].
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3.4 Graphical User Interface

The final component of this project was to build a GUI which would display what was happening
in a given game to the user. Most of the general game players which were researched for this
project did not have a built in graphical component of this nature.

A separate piece of software was generally required for each game. The player would generally
provide the external software with its moves as inputs so users can see its moves and play against
it either themselves or using another AI.

It was decided for this project to take an alternative approach to displaying games to a user. A
graphical interface for each game is programmatically generated based entirely on an extension
to the game description. This was done to allow new games to be added more easily as specific
graphics would not need to be developed. It was also done to avoid having any game specific
code required to play games as this goes against the core philosophy of general game playing.

To achieve this a new keyword was created to extend the GDL language as mentioned in section
3.1.1. The required information such as images and coordinates could then be given in the game
descriptions using this extension.

With this information it was possible to begin building the GUI. It was decided there would be
five key features, which were implemented in the order below:

1. Selecting the game description by file directory.

2. Assigning an AI or human to each player.

3. Providing a list of valid moves which human players could select from.

4. Display the current game state based on the description e.g. the board, pieces, cards

5. Preview users moves when they had selected one from the list, if the game state was not
reliant on random or unknown events.
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Chapter 4: Design Aspects

The software for this project was developed using a top down design. The overall system was
viewed as a single entity and decomposed into the four major components:

Parser → Propositional Network → Monte Carlo Tree Search → GUI

Each of these components was in turn viewed as a system in its own right and decomposed further.
Below is a UML class diagram modeling the interactions between the main components of the
software and an accompanying explanation of the overall design at a high level.

Figure 4.1: UML class diagram of major software components

The Graphics class creates the GUI from which users can load and play games. Once a user has
selected a game, the DescriptionTable is created and the file is parsed and stored as appropriate
in the DescriptionTable.

Finally once the user is ready to play theGameManager and players are created. The GameManager
builds a single PropNetP layer which is used to manage the game and determine the outcome
of random events. All additional players required then share that players PropNet so only one
has to be built, as that is a time consuming process.
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4.1 Game Description Parser

This system was designed as a general purpose parser with three major sub-systems. It was not
designed to parse a particular grammar rather it can take any LL(1) grammar as an input and
process a text file accordingly.

This design approach was taken so that modifications could be easily made to the grammar
without any system code being altered. This proved to be a wise decision as several changes were
made to the initially defined grammar over the course of this project.

4.1.1 Lexical Analyzer

Lexical analysis is the first phase in the parser. It takes the directory of a text file containing a
GDL description. The lexical analyzer then combines the characters of the file into a series of
tokens. This is done by reading the character stream from the game description and feeding into
the deterministic finite automaton (DFA) illustrated below.

Figure 4.2: DFA used by the lexical analyzer

The DFA is walked through based on the characters presented until the end of a token. By then
examining the state of the DFA the lexical analyzer knows if the token is valid and its type. Based
on the result it can generate an error and terminate the program or generate the appropriate
token if it is valid. If the file can be tokenized successfully, a list of the valid tokens is sent to the
parser to perform syntactic analysis.
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4.1.2 Syntactic Analysis

The syntactical meaning of the game description is validated in the parser. Parsers do this by
examining the token stream produced by the lexical analyzer and comparing it to the grammar
which it is provided. The way in which this is done depends on how the parser is designed. For
this project a top down, back tracking, recursive descent parser was implemented.

• Top Down: the parser constructs the parse tree beginning with the start symbol. It then
attempts to transform that symbol into the token stream produced by the lexical analyzer.

• Recursive Descent: this is a style of parsing which uses recursive procedures associated
with grammar non terminals to process the input. It determines which grammar production
to use by trying each production in turn. This leads to certain limitations. The main issue
is it can only parse grammars with certain properties. For example, a grammar containing
left recursion cannot be parsed by this parser.

• Back Tracking: This parser requires backtracking. This means it may process certain
inputs more than once to find the required production. If one derivation of a non terminal
fails, the parser restarts the process trying different productions of same non terminal.

Once the parser has validated the syntactic meaning of a game description. It then groups the
tokens into facts and rules as appropriate and stores them accordingly for future use. A detailed
description and example of the parsing process used can be found in Section 5.1.

4.2 Propositional Network

A propositional network (propnet) is a type of graph. The graph is made of propositions (state-
ments about the game which can become true or false) with logical connectives (inverters, and-
gates, or-gates, and transitions) representing their effects on each other. The location of networks
which this player has built and instructions on how to view them can be found in Appendix II.

This system was designed to programmatically map a GDL description of a game to an equivalent
propnet. This was necessary as game descriptions must be written manually. This can be easily
done using compact descriptions in GDL. However, manually defining a propnet is an extremely
difficult task. This design decision was made as it can be very difficult to manually define a propnet.
The propnet built for TicTacToe by this player contains 3206 nodes (Section 6.2.2), many of which
have multiple inputs and outputs. Due to this complexity it was decided to manually define games
in GDL and then programmatically generate the propnet from the description. There were two
major components to this task; flattening the original description and building the propnet from
the flattened description.

4.2.1 Flattening The Description

A propnet must contain a node for each unique proposition, which could potentially become true
based on the game description. However, when rules or facts are defined in GDL descriptions,
they will often contain propositions whose values are not specifically defined. Instead, they will
contain a variable which could represent many different values. This is done to describe games
compactly. Rather than replicating the same rule potentially hundreds of times changing only one
value, the rule can be written just once with a variable.
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This means that before the propnet can be built each rule containing a variable must be replaced
by an equivalent set of grounded rules (rules with no variables). This is done by the Flattener class.
The domain of all variable are explicitly specified in the base propositions of a GDL description.
This gives the player access to the potential domain of each variable. An example of this can be
found in Appendix I

The flattener examines each non-grounded rule in the description. It then will recursively attempt
to instantiate the rule with every possible combination of valid values. This will be determined
based on two factors:

• Domain of the variables. The possible values each variable in a proposition could have
based on the game description.

• Consistent instantiation of the variable. In a rule consisting of multiple propositions, a
variable ?x must have the same value for each occurrence in the rule.

4.2.2 Building The Network

Once the game description has been flattened the network itself needs to be built by the Prop-
NetBuilder class.

Each proposition in the game description is assigned a unique node at first with no inputs or
outputs. These nodes can be propositions if their values change or constants if they do not.

Then the head of each rule (the proposition which is proved by the rule) is given an And-gate as
an input. The outputs of all nodes in the body of the rule are then connected to the And-gate.
This means when the body of a rule is true its head becomes true. A Transition node is then
given as an output. The transition node controls flow of information from one step to the next.
It acts as one step delay similar to a flip-flop in digital circuitry.

Next Not-gates are inserted after components which are negated in the game description. Finally
any proposition with multiple inputs has an Or-gate inserted between itself and its inputs.

4.3 Gameplay / Move Selection

This system has been designed to manage gameplay through the GameManager class in addition
to various extensions of the PropNetPlayer class. The PropNetPlayer is the most basic form of
game player on which all other players are built as extensions. There are currently three extended
players Human, Pure Monte Carlo and Monte Carlo Tree Search.

The GameManager takes a list of these players and assigns them each to a role in the game. It
then initializes the propositional network i.e. the game. It will then ask all players for their move
each turn. In some cases this move may even be to do nothing that turn. This continues until a
terminal state is reached and the GameManager can terminate the game and start a new game
without rebuilding the propositional network.

Once the manager has all the moves for a turn it generates the outcome of random elements in
the game and then updates the new game state created by the player’s actions.
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4.3.1 Monte Carlo Tree Search

The most sophisticated and successful player designed for this project to date implements the
Monte Carlo Tree Search (MCTS). This player uses the MCTS to determine its move selection
each turn.

There are four stages to this algorithm which are discussed below. A more detailed explanation
of the implementation of the selection can be found in Section 5.1

Figure 4.3: Stages of the Monte Carlo Tree Search

• Selection: the player begins at the root of the game tree (the current state of the game).
It then begins to select child nodes until it reaches a leaf node in the tree. However, it does
not select these child nodes at random. The selection is biased by two factors discussed
in Section 2.5.6 exploration and exploitation. By looking at both these factors the aim is
to strike a balance between refining the search in promising areas of the tree and exploring
new areas.

These two factors are used to generate a score for each child node. The nodes are then
each assigned a probability of being selected based on this score. The better their score the
more likely they are to be chosen.

• Expansion: once a node has been selected that node must then be expanded. Nodes are
created for each of its children i.e. for each possible move from that state of the game.
These nodes are then added to the tree.

• Simulation: This is the step which tries to evaluate each game state. Its results are used
as part of the selection phase to exploit nodes which do well in this phase.

From the selected node a random playout of the game is performed to termination. Since
the playouts are random this can be done very fast. Neither player spends time thinking
about which move it should make and only one branch of the game tree must be explored
at each depth.

• Back Propagation: once a playout has reached termination the results for each player are
propagated backwards along the path to the root. Each node along the path is updated
with the results of the playout and the one extra time it has been visited. This will cause
them to have a new score in the next selection phase.
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There are some drawbacks to this design. In order for this algorithm to be successful it is essential
that the player is fast enough to simulate a very large number of games during simulation phase.
Performing a single random playout of a game will generally give a very poor indication of how
good that position is for the player. This is because the random moves selected may have been
terrible moves that no rational player would ever make. Over a small set of simulations luck simply
plays too large a role in estimating the value of a game state. However, as the simulation set
increases the results become more and more reliable as the number of lucky runs gets balanced
by equally unlucky runs. The more time allotted and hence simulations performed the better this
algorithm performs.

This was a major factor in the decision to switch to propnet design for game representation. It
would have been extremely difficult to successfully use this type of move selection in a reasonable
time without the propnet as processing game states would be too slow.

Another drawback is that it can struggle in games in which a loop can be entered, for example in a
game such as the 8-puzzle where the only terminating condition is completing the puzzle. Though
unlikely a player could potentially choose an infinite series of moves which would not reach the
terminal condition i.e. move tile left, move it back and repeat. This can be counteracted to a
degree by, forcibly terminating simulations taking much longer than expected.

4.4 Graphical User Interface

This graphical user interface (GUI) for this project was implemented using javaFX. It has been
designed to generate graphics entirely based on the game description. This means that there is no
game specific code required to display games, although game descriptions do need an extension
to allow this facility to be exploited.

Two javaFX scenes have been designed for the GUI which can be seen below. They are the
Selection Scene and the Playable Scene.

Figure 4.4: Selection scene file section. Figure 4.5: Selection scene assign player.

There are two stages to the selection scene. First as seen in Figure 4.3 the user can select a
file directory using a FileChooser or by inputing it manually. Once the directory to the game
description has been selected the user has the option to assign a AI or Human player to each role
in the game. This can be seen in Figure 4.4. There is a drop down menu to allow the user to
select a specific role or all roles and they can assign the player type using the check boxes. Finally
the user can press play game to display the playable scene shown below.
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Figure 4.6: Playable scene for Tic Tac Toe Figure 4.7: Playable scene previewing move

Once the user is ready to play the propnet is built and the playable scene in Figure 4.5 can be
displayed. This scene is made of three javaFX panes enclosed in a single BorderPane:

• Options Pane: this pane is along the bottom of the scene and currently contains only
the move submission button and a text field to enter a move manually if the user desires.
This is where options which will hopefully be implemented in future iterations will be, for
example undo move or hint.

• Moves Pane: this can be found on the right of the playable scene. It contains a scrollable
list of all the legal moves for the current player. If the current player is an AI selecting
these moves will have no effect they will simply show the possible moves the AI could make.
However, if a human player selects a move by clicking it, as seen in Figure 4.6 the move will
be previewed showing the user its effect on the game. If the outcome of the move depends
on random events the move will not be previewed as the outcome is unknown.

• Board Pane: this is a GridPane which displays the game itself. What this displays is
determined by the game description. Rules can be defined which tell the GUI the location
of an image and the coordinates on the pane it should be drawn. When these rules become
true the images are drawn as specified. A detailed explanation of this implementation can
be found in section 5.4.
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Chapter 5: Detailed Design & Implementation

5.1 Recursive Descent Parsing

Top-down parsers start from the root node and match the input against the production rules to
replace them if they match. Here is an example of how this is implemented in this player. Take
the following grammar:

S → Description S
S → ε
Rule → ( Fact )
Fact → Atom Fact
Fact → Rule Fact
Fact → ε
Atom → variable | keyword | identifier

For the input string: ’( example )’, the parser will act as follows:

1. The lexical analyzer will convert the string to a list of tokens: [ (, identifier, ) ]

2. It will start with the start symbol S from the production rules and will try match its yield
to the left-most token of the input ’(’.

S → Description S

Description → ( Fact )

Here, it can match the first token ’(’ so it advances to the next token identifier.

3. It continues to try match this production by mapping Fact → identifier.

Fact → Atom Fact

Atom → identifier

In order for this production to match the second fact must become ε (nothing)

Fact → Atom Fact (Fails tries next production)

Fact → Rule Fact (Fails tries next production)

Fact → ε (Successful match)

If this production had failed the parser would have to backtrack and try a different production
of Description since there would have been no valid Fact production.

4. Now that Fact is matched it can continue matching the Description production. The next
token Rpar matches so the description production is now complete.

5. Finally the second S in the initial production is matched S → ε

Therefore the input string is valid. However, if the second S had not been matched the
search of the initial production would be abandoned and it would need to backtrack and
try all other S productions from the beginning, returning an error if none matched.
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5.2 Propositional Network

5.2.1 Computing A Topological Ordering

After a turn has been made the propositional network must be updated to determine the facts of
the new game state. To do this all the values in network need to be propagated forward. However,
the order in which the nodes are updated is very important. Imagine the scenario illustrated below:

Figure 5.1: Topological ordering example.

The node representing ( Cell 1 3 O ) is currently false. However, the player has decided to mark
that cell so next turn it will be true. This means the player will have made a line of O’s so the
terminal condition should become true and the game should end. If the network updates the
terminal node before ( Cell 1 3 O ) is updated it will think cell 1 3 is still blank and continue
playing.

In order to solve this problem the topological ordering of the graph can be calculated. A topological
ordering is a linear ordering of a graphs vertices where for every directed edge uv, u is visited
before v in the ordering. Below you can see an example of a graph which has been ordered in
such a manner.

Figure 5.2: Topologically ordered graph.

This was implemented using the following algorithm:

1. Identify a proposition that has no incoming edge (no inputs).

2. Remove the node and its edges from the network and append it to the output.

3. Repeat steps one and two until every node has been removed from the original network and
appended to the new network.

4. Return new ordered network.
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5.2.2 Displaying The Network

In order to create a visual representation of the networks a tool called ZGRViewer was used [15].
ZGRViewer is a graph visualizer implemented in Java which can display graphs expressed using
the DOT language from AT&T GraphViz. Below is an sample extract from one network built by
this player. For instructions to view full networks built for this project see Appendix II.

Figure 5.3: Section of a propositional network in ZGRViewer.

This was done to allow for easier manual validation of the network. It allows the network to be
examined to confirm if it was working as intended. Also it was done for demonstration purposes,
to display the network to others and explain how it works.

In order to use this tool the network had to be written to a file in the Grahviz dot language [14].
Custom toString methods were implemented for the PropNet and all PropNetNode components.
The implementation is illustrated below:

1. Propnet.toString() appends each element of its propNetNodes list to a string.

2. Each element of the list extends PropNetNodes. Their toString() calls toDot() and passes
its attributes.

3. toDot() produces strings in the following format:
NodeID[shape, fill, label]NodeID → OutputedNodeID

4. The object’s hashcode is used as its ID
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5.3 Monte Carlo Tree Search Selection

The Monte Carlo Tree Search uses a selection function to assign a value to each node. The
formula used for this player is:

NodeScore
#V isitsToNode +

√
2 ∗ log (#V isitsToParent#V isitsToNode )

The greater the value of this function for each node the more likely is to be selected. The first
important fact to note is that this formula returns an infinite value if the node has never been
visited, as in that case the node score is divided by 0. This means a node with no visits is always
selected before its sibling nodes which have been visited.

In the case where all children have at least one visit they are assigned a range of numbers based
on their values relative to one another. For example if node A had a value 10 and node B had
a value of 20. A would be assigned the range 1-10 and B the range 11-30. A random number
from 1-30 would then be chosen to decide which node was selected. This means since node B
has double the score of A it is twice as likely to be selected.

5.4 Games Of Incomplete Information

One of the exceptional goals for this project was to build a player capable of playing games of
incomplete information (games with random elements).

This is not supported by the standard game description language so some extensions to the
base language had to be made. The lexical analyzer was modified to accept the new keyword
RANDOM. This keyword allows a special type of player to be defined in a game description.

This special player is used to determine the outcome of all random events in the game. The
possible outcomes of random events are assigned as the possible legal moves for the RANDOM
player at the time of the event. In many instances this is a very simple and elegant solution.
However, there were some instances where it was not instantly obvious how to describe games
with this approach.

• Multiple Events Per Turn: since RANDOM is implemented as a regular player it can only
make one move per turn. However, in some games multiple random events happen each
turn. For example both players drawing a card.

To handle this situation until all random events have been resolved non RANDOM player’s
only legal move is to do nothing. The GUI and GameManager recognize this and will allow
the RANDOM player to make multiple moves in a row without the players having to interact
in any way with the system or know this is happening. Once the random events are resolved
the RANDOM player has his legal moves set to nothing and the game management returns
to normal.

• Weighted Randomness: In some games an outcome may not be completely random. It
may be that there is a 20% chance of outcome A and 80% of B. However, the RANDOM
player has an equal chance of selecting each legal move (possible outcome of an event).
So to replicate weighted randomness multiple copies of the same legal move are assigned.
This can be expressed in the game description. The result is that the players list of legal
moves would be [A,B,B,B,B] giving it the appropriate odds of selecting each outcome.

Page 31 of 39



Chapter 6: Testing & Evaluation

6.1 Functionality Testing & Methodology

This section will cover the testing this software has undergone to ensure it is working as intended.
There were four main stages to the testing methodology used for this project: unit testing,
integration testing, system testing, and user acceptance testing.

6.1.1 Unit Testing

At this stage of testing, a unit refers to a function or an individual class. During this first phase
of testing, specific units/components of the software were focused on to determine if they could
handle known inputs and outputs correctly. The goal of this endeavor was to verify that the code
actually worked. This was done partially using classical unit tests. One of the biggest benefits of
these tests was they could be run each time code was modified, allowing issues to be resolved as
quickly as possible. However, manual testing was used instead for certain units which were more
difficult to produce automated tests for.

For example many elements of the Monte Carlo player rely on randomness which makes it more
difficult to write unit tests for since the ’correct’ output is unknown. Also producing a unit test to
validate if a propnet was built correctly would have been a very challenging task. Each time the
network was built nodes would have random NodeID’s, in addition there could be thousands of
nodes all interconnected making it very difficult to manually determine the correct output. This
is why so much effort went into creating a graphical representation of the network as discussed
in Section 5.2.2 so that networks could be examined and verified manually.

6.1.2 Integration Testing

The integration testing combined all of the units within a program and tested them as a group.
This testing was designed to find defects in how multiple classes interacted. This was particularly
beneficial in determining how effectively sub-systems were working together. No matter how
effective each component was on its own, if they were not integrated correctly and efficiently, the
overall software would have been affected.

6.1.3 System Testing / User Acceptance Testing

This is the first stage where the completely integrated system was tested. It was tested in end-to-
end scenarios that users would engage in. The aim of this testing was to verify that the system
met all its requirements (the goals of the project specification) and that the software was easy
to understand and use. In this phase of testing a type of smoke testing was used. A checklist of
possible uses was created and the software was used as a user would in the real world to find any
flaws.

Page 32 of 39



Finally a small alpha test was conducted. The software was given to a small number of users to
experiment with. These users were then surveyed on their experience. Their feedback was used
to find flaws and improve usability. For example based on this testing the previewing of moves
reliant on random outcomes was removed as it confused users.

6.2 Performance Testing

The previous section discussed the testing which was done to prove the correctness of this software.
This section will instead cover the testing which has been done in order to evaluate the performance
of the software as a whole. Reflections on and discussions of these results can be found in section
6.3.

6.2.1 Games Tested

This shows the games which have been defined and throughly tested on the general game player.
All the games in this section work as intended. A compilation video of many of these games being
played has been produced to better show this [16]. The player has currently been tested for the 9
unique games listed below:

# Name Category Description

1 Light Puzzle Single Player Puzzle There are 3 switches with different effects
on the lights. The aim is to turn on all the
lights pressing only seven buttons.

2 3 Puzzle Single Player Puzzle This is a slider puzzle in a 2*2 grid, the aim
is to order the numbers on the tiles

3 8 Puzzle Single Player Puzzle The same as 3 Puzzle but on a 3*3 grid.

4 Tic Tac Toe Standard 2 player game A two player game where the aim is to make
a line of X or O in a 3*3 grid.

5 Eot Cat Cit Standard 2 player game A variant of Tic Tac Toe where the first
player to make a line loses.

6 Horseshoe Standard 2 player game A two player game where the aim is to box
in your opponent so they cannot move.

7 Duikoshi Standard 2 player game A two player variant of sudoku.

8 High or low Incomplete information A card game. Each Player is dealt a ran-
dom card and must guess if the card is
higher or lower than the dealers.

9 Blind Tic Tac
Toe

Incomplete informa-
tion and simultaneous
moves

S variant of Tic Tac Toe where both player
make their moves simultaneously. If they
choose the same tile the player who gets to
mark it is selected randomly.
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6.2.2 Propositional Network Performance

Below is a list of results relating to the propnets performance for each game in Section 6.2.1.
These results were produced by the PropNetPerformace class. A discussion of the results can
be found in Section 6.3.

Game #Nodes Build Time Average # States
Processed Per Minute

Light Puzzle 434 0.011 Seconds 932,376 States

3 Puzzle 2,566 0.297 Seconds 139,656 States

8 Puzzle 35,287 101.621 Seconds 8,436 States

Tic Tac Toe 3,206 0.603 Seconds 146,148 States

Eot Cat Cit 3,024 .594 Seconds 135,540 States

Horseshoe 9,926 3.964 Seconds 32,904 States

Duikoshi 44,715 67.716 Seconds 5,952 States

High or Low 4,873 0.98 Seconds 141,276 States

Blind Tic Tac
Toe

6,274 0.655 Seconds 85,032 States

6.2.3 Quality Of Gameplay

To test the quality/skill of the player, it was played against a random legal player. This was
used as a baseline to measure the player’s performance. The results of testing with five seconds
allocated to making a move each turn have been included below. These results were produced by
the WinRateTest class and additional results with different times per move can be found in the
test results folder of the project submission.

MCTS player vs Random Player

Game Time Per
Move

#Matches %Won %Drawn %Lost

Tic Tac Toe 5 Seconds 1000 98% 1% 1%

Horseshoe 5 Seconds 1000 88% 0% 12%

Duikoshi 5 Seconds 1000 94% 0% 6%

Blind Tic Tac
Toe

5 Seconds 1000 62% 33% 5%
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6.3 Evaluation Of Results

The results of the test phase of this project have yielded very promising results as a whole.

The first set of results in section 6.2.1 has shown the range of games which have been tested on
this player. These results show a diverse selection of games have been tested on the player. The
fact that the player has been shown to play this wide range of games correctly to completion [16],
in combination with the thorough testing methodology which was used in its development, yields
a high level of confidence that the player works as intended for games that it is given a correct
description of.

However, all the games tested are relatively simple. They do not indicate how the player performs
with very complex games. The testing is lacking in this aspect. The reason for this is that the
time taken to build the propositional network is currently very long for large games making it very
difficult test them effectively. The building of the needs to be further optimized to handle this.

The testing performed on the propositional network has yielded both positive and negative results.
The positive result is that the speed at which the network is capable of processing game states
particularly for simpler games is exceptionally fast. For example in the game Tic Tac Toe where
there are 5478 states in the entire game tree, the network can transition through every possible
state in the game in approximately 2.5 seconds.

However, as mentioned before, as the games get more complex for example Duikoshi the propnet
slows dramatically, as the size of the network needed to describe the game becomes very large.
From manually inspecting the network it can be seen that it is in fact much larger than it needs to
be. Multiple inefficiencies can be found which could be optimized to greatly improve performance.
These are discussed in section 7.2.

Largely due to the speed of the propnet the quality of gameplay is very good. Since many random
playouts can be performed by the MCTS it is able to select good moves. However, once again
these results only indicate how it performs on simple and some moderately complex games.

The player can make mostly better than random moves very quickly with only one second per
move. However, the win rates continue to increase when given more time per move. With
approximately 5 seconds per turn, it can be seen that the player is making far better than random
moves. It consistently produces a very high win rate across multiple games tested in section 6.2.3.
For these smaller games there seems to be diminishing returns around the 5-10 second range, yet
small improvements are continually made with additional time.
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Chapter 7: Conclusion & Future Work

7.1 Conclusion

The main aim of the General Game Player project was to develop a piece of software which could
be told the rules of many 2d games using the standard game development language and then
play those games. In many ways this project has been extremely successful at meeting and even
surpassing this goal. In addition every single mandatory, discretionary and exceptional goal of the
project specification has been met. However, it has been limited to a certain extent in both the
complexity of the games it can play and graphically display.

A completely functional general game player has been developed. The player can take a description
for a game in GDL and play it to completion with any combination of human or AI players.

Nine games have been used as test cases to illustrate the wide range of games the player is capable
of playing. They include card games, board games, puzzles, well known games and obscure games.
They even go beyond what was originally hoped for by playing games which cannot be described
in the standard game description language (games of incomplete information) which was one of
the exceptional goals of the project.

The player also surpassed the goal of simply playing these games correctly. A random legal player
is capable of that. The player plays these games much better than randomly as can be seen in
Section 6.3. With no prior game knowledge of what is good or bad it is capable of identifying
good moves and very often for simple games the best move.

These games can be played easily by the user through a graphical interface which generates unique
graphics for each game and also lists the possible legal moves for the player to make.

However, the graphics that can be produced are very basic. The only graphical information which
can be specified in game descriptions currently is an image and the co-ordinates it should be
drawn at. Though this can be made to work for a great many games if the user is creative, it is
not an elegant solution. Many more tools and options could be added to allow for more complex
graphics. For example sprites, layering of images or drawing lines between coordinates.

Also as mentioned before, there are limitations to the complexity of the games this player can
handle. Though theoretically this player can play any game which can be correctly defined in the
game description language and even some which cannot, in practice for complex games such as
chess or go it simply takes too long to build the propositional network needed to play the game.
Far and above any other issue, that is the greatest limitation of this project.

In spite of this limitation, by no means should the use of propositional networks in general game
playing be condemned. Once built, the ability to process game states using propositional networks
has proven to be very effective even if it currently only works for more simple games.

There will always be some trade off when using a propositional network where time must be
spent building the network prior to the game, so that the game can be played faster and better.
However, there are several ways in which the network could be optimized to reduce this time.
This is a very promising area in general game playing which requires more experimentation and
could potentially yield great advancements in the field of general game playing.
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7.2 Future Work

This section covers future work which could be done to improve and extend the general game
player developed for this project. There were two major areas of this project that have been
identified which could be improved by future work.

• Propositional Network Optimization: as the complexity of games increase, the size of
the networks built by this player to represent them increases rapidly. To effectively use a
propositional network for representing complex games this needs to be optimized to make
the networks smaller. There are many ways in which this could be done. The image below
is taken from a propnet built for Tic Tac Toe. It illustrates two examples of optimizations
that could be made.

Figure 7.1: Network inefficiencies

At the top right of Figure 7.1 there is an And-Gate. It has only one input making the gate
superfluous. It could be removed. There are also multiple nodes to represent the different
ways in which (Line O) can become true. These could all be replaced by direct inputs to
the Or-Gate. These are two examples of how the propnet could be optimized but there are
other many ways the network could be better optimized in the future.

Additionally in order to mitigate the time needed to build the network serialization could
be implemented to write the network to a file so it could be read later. Users would then
only need the network to be built once and could quickly load it from a file in the future.

• User Interface: the graphical capability of the player is very basic. It can only draw static
images at preassigned coordinates. Many improvements and extensions could be made to
this system. Examples are allowing images to be layered, the use of sprites, highlighting
cells. There are too many possibilities to list.

Looking beyond the graphical component of the user interface there are also many functional
improvements which could be added. For example options to undo moves, save the current
state of the game, ask the AI for a hint. These kinds of additions could vastly improve the
end user experience and are definitely worthy of future development.

Another potential use for this project which could be pursued further is the testing of various AI
for general game playing. The software developed for this project could prove to be an excellent
testbed for prototyping and experimenting with new player AI’s, in particular if the improvements
previously discussed in this section were made. New AI can be very easily implemented into
this system by extending the PropNetP layer class which contains all the essential functionality
for a player. Also a suite of reusable tests have been designed to quickly measure a new AI’s
performance across multiple games against other AI seen in Section 6.2.3. This could be very
useful for testing new AI in the GGP field without needing to build an entire GGP system.
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Appendix I: Sample GDL Description

This is a very simple game described in GDL for demonstration purposes. In this game there is
one player and a single light, if the player turns the light on he wins. The bold font is the actual
GDL.

role is the keyword which is used to specify players in the game.
(role player)

This is a base proposition. It is used to specify the domain of variables within propositions in the
description.
(base light (on off))

This is the set of propositions which are true at the start of the game.
(init (light off))

<= indicates this is a rule. The proposition which follows it(the head of the rule) will become
true if the rest of the propositions in the rule are true (the body of the rule). legal represents a
move a player can make. Here it is legal for player to press switch if it is true the light is off.
(<= (legal player (press switch))(true (light off)))

next represents a proposition which will become true next turn. Here the light will be on next
turn if player presses the switch.
(<= (next (light on))(does player (press switch))))

terminal represents the end of the game, if the light is on the game ends.
(<= terminal(true (light on)))

Appendix II: ZGRViewer For Propnets

ZGRViewer is a graph visualizer tool for displaying graphs expressed in the DOT language. Dot
files for several networks have been included in the Sample Propositional Networks folder of
the project submission. Instructions for how to use this tool to view these networks can be found
on the ZGRViewer website [16]. Alternatively a video has been produced to show a propositional
network for the game of Tic Tac Toe [17] which can simply be viewed instead.
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