
Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

L. Lancia, G. Salillari
Cloud Computing

Master Degree in Data Science
Sapienza Università di Roma

Facebook Tao
Distributed Data Store for the Social Graph

L. Lancia & G. Salillari 1 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Table of Contents

The Data Model

Architecture

Implementation

Consistency & Failures

Workload & Performance

L. Lancia & G. Salillari 2 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Introduction

What is TAO?

TAO is a geographically distribute store
• deployed at Facebook
• with efficient and timely access to social graph
• using a fixed set of query
• replacing memcache
• running on thousands of machines
• provide access to many PB of data
• process a billion reads ad millions of writes each
second!

L. Lancia & G. Salillari 3 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

The social graph

Facebook has more than 1 billion active user

• recording relationships,
• sharing interests,
• uploading pictures and …

The user experience of Fb comes from rapid, efficient and
scalable access to the social graph

L. Lancia & G. Salillari 4 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

What’s behind an entry in yours Fb page?

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 49

TAO: Facebook’s Distributed Data Store for the Social Graph

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov

Dmitri Petrov, Lovro Puzar, Yee Jiun Song, Venkat Venkataramani
Facebook, Inc.

Abstract
We introduce a simple data model and API tailored for
serving the social graph, and TAO, an implementation
of this model. TAO is a geographically distributed data
store that provides efficient and timely access to the so-
cial graph for Facebook’s demanding workload using a
fixed set of queries. It is deployed at Facebook, replac-
ing memcache for many data types that fit its model. The
system runs on thousands of machines, is widely dis-
tributed, and provides access to many petabytes of data.
TAO can process a billion reads and millions of writes
each second.

1 Introduction

Facebook has more than a billion active users who record
their relationships, share their interests, upload text, im-
ages, and video, and curate semantic information about
their data [2]. The personalized experience of social ap-
plications comes from timely, efficient, and scalable ac-
cess to this flood of data, the social graph. In this paper
we introduce TAO, a read-optimized graph data store we
have built to handle a demanding Facebook workload.

Before TAO, Facebook’s web servers directly ac-
cessed MySQL to read or write the social graph, aggres-
sively using memcache [21] as a lookaside cache. TAO
implements a graph abstraction directly, allowing it to
avoid some of the fundamental shortcomings of a looka-
side cache architecture. TAO continues to use MySQL
for persistent storage, but mediates access to the database
and uses its own graph-aware cache.

TAO is deployed at Facebook as a single geograph-
ically distributed instance. It has a minimal API and
explicitly favors availability and per-machine efficiency
over strong consistency; its novelty is its scale: TAO can
sustain a billion reads per second on a changing data set
of many petabytes.

Overall, this paper makes three contributions. We mo-
tivate (§ 2) and characterize (§ 7) a challenging work-
load: efficient and available read-mostly access to a
changing graph. We describe objects and associations, a
data model and API that we use to access the graph (§ 3).
Lastly, we detail TAO, a geographically distributed sys-
tem that implements this API (§§ 4–6), and evaluate its
performance on our workload (§ 8).

!"#$% &'"(%)*&+,%*-.#(/% -'0

1+,23 4+5#(

6+7*+,*,2% 6#,2

8*9#72*6%*6%.%*,2%.%: ,2#7"#;%7

!"8*<=>?*#$%&'8*@ABC
()*'8*!"#$%

!@DEFCB4G-H
!@DEFCB4

!"8*>IJ?*#$%&'8*KF1!DLFM
()*'8*&'"(%)*&+,%*-.#(/%
+#,8*INOJPQ<<QQM?*<RRORSQJIQQ9

KF
1

1E
TL
M

)$
%&
'8
*1
F
U
U
BM

D
$!*

'8
*<
II

J>
<<
VN

=

!"

#"

WC
LB
M4

WC
LB
M4

WC
LB
M4

WC
LB
M4

WC
LB
M4

!"8*RJJ?*#$%&'8*@ABC
()*'8*-'0 D!&&B4

D!&&B4G!D

WC
LB
M4

WC
LB
M4

WC
LB
M4

!"8*INP?*#$%&'8*@ABC
()*'8*1+,23

!@DEFCB4G-H!@DEFCB4

!"8*VIR?*#$%&'8*1EB1TLM

WC
LB
M4

WC
LB
M4

!"8*JN<?*#$%&'8*@ABC
()*'8*4+5#(

KLTB4G-H
KLTBA

!"8*NN<?*#$%&'8*1FUUBMD
$'-$8*9#72*6%*6%.%*,2%.%:

Figure 1: A running example of how a user’s checkin
might be mapped to objects and associations.

2 Background

A single Facebook page may aggregate and filter hun-
dreds of items from the social graph. We present each
user with content tailored to them, and we filter every
item with privacy checks that take into account the cur-
rent viewer. This extreme customization makes it infeasi-
ble to perform most aggregation and filtering when con-
tent is created; instead we resolve data dependencies and
check privacy each time the content is viewed. As much
as possible we pull the social graph, rather than pushing
it. This implementation strategy places extreme read de-
mands on the graph data store; it must be efficient, highly
available, and scale to high query rates.

2.1 Serving the Graph from Memcache
Facebook was originally built by storing the social graph
in MySQL, querying it from PHP, and caching results
in memcache [21]. This lookaside cache architecture is
well suited to Facebook’s rapid iteration cycles, since all

A single Fb page aggregate and filter hundreds of items from
the social graph.

L. Lancia & G. Salillari 5 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 49

TAO: Facebook’s Distributed Data Store for the Social Graph

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov

Dmitri Petrov, Lovro Puzar, Yee Jiun Song, Venkat Venkataramani
Facebook, Inc.

Abstract
We introduce a simple data model and API tailored for
serving the social graph, and TAO, an implementation
of this model. TAO is a geographically distributed data
store that provides efficient and timely access to the so-
cial graph for Facebook’s demanding workload using a
fixed set of queries. It is deployed at Facebook, replac-
ing memcache for many data types that fit its model. The
system runs on thousands of machines, is widely dis-
tributed, and provides access to many petabytes of data.
TAO can process a billion reads and millions of writes
each second.

1 Introduction

Facebook has more than a billion active users who record
their relationships, share their interests, upload text, im-
ages, and video, and curate semantic information about
their data [2]. The personalized experience of social ap-
plications comes from timely, efficient, and scalable ac-
cess to this flood of data, the social graph. In this paper
we introduce TAO, a read-optimized graph data store we
have built to handle a demanding Facebook workload.

Before TAO, Facebook’s web servers directly ac-
cessed MySQL to read or write the social graph, aggres-
sively using memcache [21] as a lookaside cache. TAO
implements a graph abstraction directly, allowing it to
avoid some of the fundamental shortcomings of a looka-
side cache architecture. TAO continues to use MySQL
for persistent storage, but mediates access to the database
and uses its own graph-aware cache.

TAO is deployed at Facebook as a single geograph-
ically distributed instance. It has a minimal API and
explicitly favors availability and per-machine efficiency
over strong consistency; its novelty is its scale: TAO can
sustain a billion reads per second on a changing data set
of many petabytes.

Overall, this paper makes three contributions. We mo-
tivate (§ 2) and characterize (§ 7) a challenging work-
load: efficient and available read-mostly access to a
changing graph. We describe objects and associations, a
data model and API that we use to access the graph (§ 3).
Lastly, we detail TAO, a geographically distributed sys-
tem that implements this API (§§ 4–6), and evaluate its
performance on our workload (§ 8).

!"#$% &'"(%)*&+,%*-.#(/% -'0

1+,23 4+5#(

6+7*+,*,2% 6#,2

8*9#72*6%*6%.%*,2%.%: ,2#7"#;%7

!"8*<=>?*#$%&'8*@ABC
()*'8*!"#$%

!@DEFCB4G-H
!@DEFCB4

!"8*>IJ?*#$%&'8*KF1!DLFM
()*'8*&'"(%)*&+,%*-.#(/%
+#,8*INOJPQ<<QQM?*<RRORSQJIQQ9

KF
1

1E
TL
M

)$
%&
'8
*1
F
U
U
BM

D
$!*

'8
*<
II

J>
<<
VN

=

!"

#"

WC
LB
M4

WC
LB
M4

WC
LB
M4

WC
LB
M4

WC
LB
M4

!"8*RJJ?*#$%&'8*@ABC
()*'8*-'0 D!&&B4

D!&&B4G!D

WC
LB
M4

WC
LB
M4

WC
LB
M4

!"8*INP?*#$%&'8*@ABC
()*'8*1+,23

!@DEFCB4G-H!@DEFCB4

!"8*VIR?*#$%&'8*1EB1TLM

WC
LB
M4

WC
LB
M4

!"8*JN<?*#$%&'8*@ABC
()*'8*4+5#(

KLTB4G-H
KLTBA

!"8*NN<?*#$%&'8*1FUUBMD
$'-$8*9#72*6%*6%.%*,2%.%:

Figure 1: A running example of how a user’s checkin
might be mapped to objects and associations.

2 Background

A single Facebook page may aggregate and filter hun-
dreds of items from the social graph. We present each
user with content tailored to them, and we filter every
item with privacy checks that take into account the cur-
rent viewer. This extreme customization makes it infeasi-
ble to perform most aggregation and filtering when con-
tent is created; instead we resolve data dependencies and
check privacy each time the content is viewed. As much
as possible we pull the social graph, rather than pushing
it. This implementation strategy places extreme read de-
mands on the graph data store; it must be efficient, highly
available, and scale to high query rates.

2.1 Serving the Graph from Memcache
Facebook was originally built by storing the social graph
in MySQL, querying it from PHP, and caching results
in memcache [21]. This lookaside cache architecture is
well suited to Facebook’s rapid iteration cycles, since all

L. Lancia & G. Salillari 6 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Before Tao

• Facebook was storing the social graph to MySql
• Quering it from PHP
• Storing result in memcache

Over time Fb deprecated direct access to MySQL in favor of a
graph (associations, nodes) abstraction

L. Lancia & G. Salillari 7 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Limits

• Operations on lists are inefficient in memcache (update
whole list)

• Complexity on clients managing cache
• Hard to offer read-after-write consistency

Also they want to access social graph from non-PHP services

L. Lancia & G. Salillari 8 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

TAO’s Goals

• Efficiency at Scale
• Low read latency
• Timeliness of writes
• High read availability

L. Lancia & G. Salillari 9 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

TAO’s Goals

• Efficiency at Scale
• Low read latency
• Timeliness of writes
• High read availability

L. Lancia & G. Salillari 9 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

TAO’s Goals

• Efficiency at Scale
• Low read latency
• Timeliness of writes
• High read availability

L. Lancia & G. Salillari 9 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

TAO’s Goals

• Efficiency at Scale
• Low read latency
• Timeliness of writes
• High read availability

L. Lancia & G. Salillari 9 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Tao Data Model

T.A.O. stands for “The Associations and Objects”

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 49

TAO: Facebook’s Distributed Data Store for the Social Graph

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov

Dmitri Petrov, Lovro Puzar, Yee Jiun Song, Venkat Venkataramani
Facebook, Inc.

Abstract
We introduce a simple data model and API tailored for
serving the social graph, and TAO, an implementation
of this model. TAO is a geographically distributed data
store that provides efficient and timely access to the so-
cial graph for Facebook’s demanding workload using a
fixed set of queries. It is deployed at Facebook, replac-
ing memcache for many data types that fit its model. The
system runs on thousands of machines, is widely dis-
tributed, and provides access to many petabytes of data.
TAO can process a billion reads and millions of writes
each second.

1 Introduction

Facebook has more than a billion active users who record
their relationships, share their interests, upload text, im-
ages, and video, and curate semantic information about
their data [2]. The personalized experience of social ap-
plications comes from timely, efficient, and scalable ac-
cess to this flood of data, the social graph. In this paper
we introduce TAO, a read-optimized graph data store we
have built to handle a demanding Facebook workload.

Before TAO, Facebook’s web servers directly ac-
cessed MySQL to read or write the social graph, aggres-
sively using memcache [21] as a lookaside cache. TAO
implements a graph abstraction directly, allowing it to
avoid some of the fundamental shortcomings of a looka-
side cache architecture. TAO continues to use MySQL
for persistent storage, but mediates access to the database
and uses its own graph-aware cache.

TAO is deployed at Facebook as a single geograph-
ically distributed instance. It has a minimal API and
explicitly favors availability and per-machine efficiency
over strong consistency; its novelty is its scale: TAO can
sustain a billion reads per second on a changing data set
of many petabytes.

Overall, this paper makes three contributions. We mo-
tivate (§ 2) and characterize (§ 7) a challenging work-
load: efficient and available read-mostly access to a
changing graph. We describe objects and associations, a
data model and API that we use to access the graph (§ 3).
Lastly, we detail TAO, a geographically distributed sys-
tem that implements this API (§§ 4–6), and evaluate its
performance on our workload (§ 8).

!"#$% &'"(%)*&+,%*-.#(/% -'0

1+,23 4+5#(

6+7*+,*,2% 6#,2

8*9#72*6%*6%.%*,2%.%: ,2#7"#;%7

!"8*<=>?*#$%&'8*@ABC
()*'8*!"#$%

!@DEFCB4G-H
!@DEFCB4

!"8*>IJ?*#$%&'8*KF1!DLFM
()*'8*&'"(%)*&+,%*-.#(/%
+#,8*INOJPQ<<QQM?*<RRORSQJIQQ9

KF
1

1E
TL
M

)$
%&
'8
*1
F
U
U
BM

D
$!*

'8
*<
II

J>
<<
VN

=

!"

#"

WC
LB
M4

WC
LB
M4

WC
LB
M4

WC
LB
M4

WC
LB
M4

!"8*RJJ?*#$%&'8*@ABC
()*'8*-'0 D!&&B4

D!&&B4G!D

WC
LB
M4

WC
LB
M4

WC
LB
M4

!"8*INP?*#$%&'8*@ABC
()*'8*1+,23

!@DEFCB4G-H!@DEFCB4

!"8*VIR?*#$%&'8*1EB1TLM

WC
LB
M4

WC
LB
M4

!"8*JN<?*#$%&'8*@ABC
()*'8*4+5#(

KLTB4G-H
KLTBA

!"8*NN<?*#$%&'8*1FUUBMD
$'-$8*9#72*6%*6%.%*,2%.%:

Figure 1: A running example of how a user’s checkin
might be mapped to objects and associations.

2 Background

A single Facebook page may aggregate and filter hun-
dreds of items from the social graph. We present each
user with content tailored to them, and we filter every
item with privacy checks that take into account the cur-
rent viewer. This extreme customization makes it infeasi-
ble to perform most aggregation and filtering when con-
tent is created; instead we resolve data dependencies and
check privacy each time the content is viewed. As much
as possible we pull the social graph, rather than pushing
it. This implementation strategy places extreme read de-
mands on the graph data store; it must be efficient, highly
available, and scale to high query rates.

2.1 Serving the Graph from Memcache
Facebook was originally built by storing the social graph
in MySQL, querying it from PHP, and caching results
in memcache [21]. This lookaside cache architecture is
well suited to Facebook’s rapid iteration cycles, since all

L. Lancia & G. Salillari 10 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Objects

• Typed nodes (type is denoted by otype)
• Identified by 64-bit integers (unique)
• Contains data in the form of key-value pairs
• Models users and repeatable actions (e.g. comments)

API for objects:

• Allocate new object
• retrieve
• update
• delete

L. Lancia & G. Salillari 11 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Objects

• Typed nodes (type is denoted by otype)
• Identified by 64-bit integers (unique)
• Contains data in the form of key-value pairs
• Models users and repeatable actions (e.g. comments)

API for objects:

• Allocate new object
• retrieve
• update
• delete

L. Lancia & G. Salillari 11 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Associations

• Typed directed edges between objects (type is denoted by
atype)

• Identified by source object id1, atype and destination
object id2

• Contains data in the form of key-value pairs.
• Contains a 32-bit time field.
• Models actions that happen at most once or records state
transition (e.g. like)

• Often inverse association is also meaningful (eg like and
liked by).

L. Lancia & G. Salillari 12 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Associations API

• Add new
• Delete
• Change type

Also inverse association is created or modified automatically

L. Lancia & G. Salillari 13 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Querying TAO

TAO’s associations queries are organized around
associations list

• assoc_get(id1,atype, id2set, high?, low?)
• assoc_count(id1,atype)
• assoc_range(id1, atype, pos, limit)
• assoc_time_range(id1,atype, high, low, limit)

Query results are bounded to 6000 results

L. Lancia & G. Salillari 14 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Architecture

Before Tao

After Tao

L. Lancia & G. Salillari 15 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Architecture

Before Tao

After Tao

L. Lancia & G. Salillari 15 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Storage Layer

• Object and Associations are stored in MySql (before & with
TAO)

• TAO API is mapped to a small set of SQL queries
• A single MySql server can’t handle TAO volumes of data

• We divide data into logical shards
• shards are mapped to db
• different servers are responsible for multiple shards
• mapping is adjusted for load balancing

• Object are bounded to a shard for their entire lifetime
• Associations are stored in the shard of its id1

L. Lancia & G. Salillari 16 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Cache Layer

TAO cache

• contains: Objects, Associations, Associations counts
• implement the complete API for clients
• handles all the communication with storage layer
• it’s filled on demand end evict the least recently used items
• Understand the semantic of their contents

It consists of multiple servers forming a tier

• Request are forwarded to correct server by a sharding
scheme as dbs

• For cache miss and write request, the server contacts
other caches or db

L. Lancia & G. Salillari 17 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Yet Another caching layer

Problem: A single caching layer divided into a tier is
susceptible to hot spot

Solution: Split the caching layer in two levels

• A Leader tier
• Multiple Followers tiers

L. Lancia & G. Salillari 18 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Yet Another caching layer

Problem: A single caching layer divided into a tier is
susceptible to hot spot

Solution: Split the caching layer in two levels

• A Leader tier
• Multiple Followers tiers

L. Lancia & G. Salillari 18 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Leaders & Followers

L. Lancia & G. Salillari 19 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Leaders & Followers

• Followers forward all writes and read cache misses to the
leader tier

• Leader sends async cache maintenance messages to
follower tier

• Eventually Consistent

• If a follower issues a write, the follower’s cache is updated
synchronously

• Each update message has a version number
• Leader serializes writes

L. Lancia & G. Salillari 20 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Leaders & Followers

L. Lancia & G. Salillari 21 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Leaders & Followers

L. Lancia & G. Salillari 21 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Leaders & Followers

L. Lancia & G. Salillari 21 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Scaling Geographically

Problem: Network latencies are not low in a multi Data Centers
environment

Considering that read misses are more common than writes in
the follower tier

Solution: Handles read cache miss locally

L. Lancia & G. Salillari 22 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Scaling Geographically

Problem: Network latencies are not low in a multi Data Centers
environment

Considering that read misses are more common than writes in
the follower tier

Solution: Handles read cache miss locally

L. Lancia & G. Salillari 22 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Scaling Geographically

Problem: Network latencies are not low in a multi Data Centers
environment

Considering that read misses are more common than writes in
the follower tier

Solution: Handles read cache miss locally

L. Lancia & G. Salillari 22 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Master & Slave Regions

Fb cluster together DC in regions (with low intra region latency)

• Each region have a full copy of the social graph
• Region are defined master or slave for each shard
• Followers send read misses and write requests to the local
leader

• Local leaders service read misses locally
• Slave leaders forward writes to the master shard
• Cache invalidation message are embedded into db
replication stream

• Slave leader will update it’s cache as soon as write are
forwarded to master

L. Lancia & G. Salillari 23 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Overall Architecture

L. Lancia & G. Salillari 24 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Implementation

To achieve performance and storage efficiency Fb have
implemented some optimizations to servers.

L. Lancia & G. Salillari 25 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Caching Servers

• Memory is partitioned into arenas by association type
• This mitigates the issues of poorly behaved association
types

• They can also change the lifetime for important
associations

• Small items with fixed size have a lot of pointer overhead
• stored separately
• Used for association counts

L. Lancia & G. Salillari 26 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

MySql Mapping

We divided the space of objects and associations into shards.
Each shard:

• is assigned to a logical DB
• there is a table for objects and a table for associations
• all field of object are serialized in a single data column
• object of different size can be stored in the same column

Exceptions:

• Some object can benefit from being stored in a different
table

• Associations counts are stored in a separate table

L. Lancia & G. Salillari 27 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Cache Sharding

Shards are mapped to chache server using consistent hashing
(like dynamo)

This can lead to imbalances, so TAO use shard cloning to
rebalance the load

There are also popular object that can be queried a lot more
often than others.

TAO says to the clients to cache them these objects

L. Lancia & G. Salillari 28 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

High-Degree Objects

Some object have a lot of associations (remember there were a
limit of 6000?)

• TAO can’t cache all associations list
• Requests will always end to Db

so

• For assoc_count, the edge direction is chosen using the
lower degree between source and destination object

• For assoc_get query, only associations whose
time > object’s creation time

L. Lancia & G. Salillari 29 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Consistency

Under normal operation, TAO is eventually consistent

Replication lag usually < 1”

Race conditions are resolved by using version numbers

In special “critical” situation a read can be forwarded to
database to ensure to read from a consistent source of truth.
(Useful for auth procedures)

L. Lancia & G. Salillari 30 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Detecting Failures

Each TAO server stores per-destination time-outs

• if several time-outs occur, hosts are marked as down
• subsequent requests are aborted
• Tao reacts trying to route around failures (favouring
availability over consistency)

• Down hosts are actively probed to check if recover

L. Lancia & G. Salillari 31 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Handling Failures

Database Fail Db can crash or be off-line for maintenance.
• If master db is down, a slave is promoted to
new master

• If a slave db is down, cache miss are
redirected to TAO leaders in master region

Leader Fail Followers re-route requests around it
• Read miss goes directly to db
• Write are routed to a random member of the
leader tier

L. Lancia & G. Salillari 32 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Handling Failures (2)

Invalidation Fail Leader can’t contact a follower during a cache
invalidation message

• Leader queues message
• If Leader also crash message are lost so new
leader send bulk invalidation

Follower Fail Followers in others tiers share the responsibility
of it’s shard

• Tao client have a primary tier and a backup
tier

L. Lancia & G. Salillari 33 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Workload

56 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

master database is down, one of its slaves is automati-
cally promoted to be the new master.

When a region’s slave database is down, cache misses
are redirected to the TAO leaders in the region hosting the
database master. Since cache consistency messages are
embedded in the database’s replication stream, however,
they can’t be delivered by the primary mechanism. Dur-
ing the time that a slave database is down an additional
binlog tailer is run on the master database, and the re-
fills and invalidates are delivered inter-regionally. When
the slave database comes back up, invalidation and refill
messages from the outage will be delivered again.

Leader failures: When a leader cache server fails,
followers automatically route read and write requests
around it. Followers reroute read misses directly to
the database. Writes to a failed leader, in contrast,
are rerouted to a random member of the leader’s tier.
This replacement leader performs the write and associ-
ated actions, such as modifying the inverse association
and sending invalidations to followers. The replacement
leader also enqueues an asynchronous invalidation to the
original leader that will restore its consistency. These
asynchronous invalidates are recorded both on the coor-
dinating node and inserted into the replication stream,
where they are spooled until the leader becomes avail-
able. If the failing leader is partially available then fol-
lowers may see a stale value until the leader’s consis-
tency is restored.

Refill and invalidation failures: Leaders send refills
and invalidations asynchronously. If a follower is un-
reachable, the leader queues the message to disk to be
delivered at a later time. Note that a follower may be
left with stale data if these messages are lost due to per-
manent leader failure. This problem is solved by a bulk
invalidation operation that invalidates all objects and as-
sociations from a shard id. After a failed leader box is
replaced, all of the shards that map to it must be invali-
dated in the followers, to restore consistency.

Follower failures: In the event that a TAO follower
fails, followers in other tiers share the responsibility of
serving the failed host’s shards. We configure each TAO
client with a primary and backup follower tier. In nor-
mal operations requests are sent only to the primary. If
the server that hosts the shard for a particular request has
been marked down due to timeouts, then the request is
sent instead to that shard’s server in the backup tier. Be-
cause failover requests still go to a server that hosts the
corresponding shard, they are fully cacheable and do not
require extra consistency work. Read and write requests
from the client are failed over in the same way. Note that
failing over between different tiers may cause read-after-
write consistency to be violated if the read reaches the
failover target before the write’s refill or invalidate.

read requests 99.8 % write requests 0.2 %
assoc get 15.7 % assoc add 52.5 %
assoc range 40.9 % assoc del 8.3 %
assoc time range 2.8 % assoc change type 0.9 %
assoc count 11.7 % obj add 16.5 %
obj get 28.9 % obj update 20.7 %

obj delete 2.0 %

Figure 3: Relative frequencies for client requests to TAO
from all Facebook products. Reads account for almost
all of the calls to the API.

7 Production Workload

Facebook has a single instance of TAO in production.
Multi-tenancy in a system such as TAO allows us to
amortize operational costs and share excess capacity
among clients. It is also an important enabler for rapid
product innovation, because new applications can link to
existing data and there is no need to move data or pro-
vision servers as an application grows from one user to
hundreds of millions. Multi-tenancy is especially im-
portant for objects, because it allows the entire 64-bit id
space to be handled uniformly without an extra step to
resolve the otype.

The TAO system contains many follower tiers spread
across several geographic regions. Each region has one
complete set of databases, one leader cache tier, and at
least two follower tiers. Our TAO deployment contin-
uously processes a billion reads and millions of writes
per second. We are not aware of another geographically
distributed graph data store at this scale.

To characterize the workload that is seen by TAO, we
captured a random sample of 6.5 million requests over a
40 day period. In this section, we describe the results of
an analysis of that sample.

At a high level, our workload shows the following
characteristics:

• reads are much more frequent than writes;
• most edge queries have empty results; and
• query frequency, node connectivity, and data size

have distributions with long tails.

Figure 3 breaks down the load on TAO. Reads domi-
nate, with only 0.2% of requests involving a write. The
majority of association reads resulted in empty associa-
tion lists. Calls to assoc get found an association only
19.6% of the time, 31.0% of the calls to assoc range in
our trace had a non-empty result, and only 1.9% of the
calls to assoc time range returned any edges.

Figure 4 shows the distribution of the return values
from assoc count. 45% of calls return zero. Among the
non-zero values, although small values are the most com-
mon, 1% of the return values were > 500,000.

Figure 5 shows the distribution of the number of asso-

Frequencies for client request

L. Lancia & G. Salillari 34 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Availability

Under real workload, over a period of 90 days, the fraction of
failed TAO queries is:

4.9× 10−6

L. Lancia & G. Salillari 35 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Followers Capacity

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 57

10-5

10-4

10-3

1%

10%

100%

1 2 4 8 25 27 29 211 213 215 217 219 221 223 225 227

CC
DF

 (f
ra

cti
on

 >
)

assoc_count return value

Figure 4: assoc count frequency in our production envi-
ronment. 1% of returned counts were ≥512K.

10-6

10-5

10-4

10-3

1%

10%

100%

1 2 4 8 24 25 26 27 28 29 210 211 212 213

CC
DF

 (f
ra

cti
on

 >
)

of returned assocs

assoc_range
assoc_time_range

Figure 5: The number of edges returned by assoc range
and assoc time range queries. 64% of the non-empty
results had 1 edge, 13% of which had a limit of 1.

ciations returned for range and time-range queries, and
the subset that hit the limit for returned associations.
Most range and time range queries had large client-
supplied limits. 12% of the queries had limit = 1, but
95% of the remaining queries had limit ≥ 1000. Less
than 1% of the return values for queries with a limit ≥ 1
actually reached the limit.

Although queries for non-existent associations were
common, this is not the case for objects. A valid id is
only produced during object creation, so obj get can only
return an empty result if the object has been removed
or if the object’s creation has not yet been replicated to
the current region. Neither of these cases occurred in
our trace; every object read was successful. This doesn’t
mean that objects were never deleted – it just means that
there was never an attempt to read a deleted object.

Figure 6 shows the distribution of the data sizes for
TAO query results. 39.5% of the associations queried
by clients contained no data. Our implementation allows
objects to store 1MB of data and associations to store
64K of data (although a custom table must be configured
for associations that store more than 255 bytes of data).
The actual size of most objects and associations is much

1006

10-5

10-4

10-3

1%

10%

0 1 2 4 8 24 25 26 27 28 29 210211212213214215216217218

fre
qu

en
cy

data size

associations
objects

Figure 6: The size of the data stored in associations and
objects that were returned by the TAO API. Associations
typically store much less data than objects. The aver-
age association data size was 97.8 bytes for the 60.5%
of returned associations that had some data. The average
object data size was 673 bytes.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

sin
gle

-s
er

ve
r t

hr
ou

gh
pu

t (
re

qu
es

t p
er

 se
c)

follower hit rate (%)

avg aggregate hit rate

Figure 7: Throughput of an individual follower in our
production environment. Cache misses and writes are
more expensive than cache hits, so the peak query rate
rises with hit rate. Writes are included in this graph as
non-hit requests.

smaller. However, large values are frequent enough that
the system must deal with them efficiently.

8 Performance

Running a single TAO deployment for all of Facebook
allows us to benefit from economies of scale, and makes
it easy for new products to integrate with existing por-
tions of the social graph. In this section, we report on the
performance of TAO under a real workload.

Availability: Over a period of 90 days, the fraction
of failed TAO queries as measured from the web server
was 4.9× 10−6. Care must be taken when interpreting
this number, since the failure of one TAO query might
prevent the client from issuing another query with a dy-
namic data dependence on the first. TAO’s failures may
also be correlated with those of other dependent systems.

L. Lancia & G. Salillari 36 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Hit Rates and latency

58 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

hit lat. (msec) miss lat. (msec)
operation 50% avg 99% 50% avg 99%
assoc count 1.1 2.5 28.9 5.0 26.2 186.8
assoc get 1.0 2.4 25.9 5.8 14.5 143.1
assoc range 1.1 2.3 24.8 5.4 11.2 93.6
assoc time range 1.3 3.2 32.8 5.8 11.9 47.2
obj get 1.0 2.4 27.0 8.2 75.3 186.4

Figure 8: Client-observed TAO latency in milliseconds
for read requests, including client API overheads and net-
work traversal, separated by cache hits and cache misses.

0%

10%

20%

30%

40%

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

fre
qu

en
cy

write latency (msec)

remote region latency
master region latency

avg ping latency

Figure 9: Write latency from clients in the same region
as database masters, and from a region 58 msec away.

Follower capacity: The peak throughput of a follower
depends on its hit rate. Figure 7 shows the highest 15-
minute average throughput we observe in production for
our current hardware configuration, which has 144GB
of RAM, 2 Intel Xeon 8 core E5-2660 CPUs running at
2.2Ghz with Hyperthreading, and 10 Gigabit ethernet.

Hit rates and latency: As part of the data collection
process that was described in § 7, we measured latencies
in the client application; these measurements include all
network latencies and the time taken to traverse the PHP
TAO client stack. Requests were sampled at the same
rate in all regions. TAO’s overall hit rate for reads was
96.4%. Figure 8 shows the client-observed latencies for
reads. obj get has higher miss latencies than the other
reads because objects typically have more data (see Fig-
ure 6). assoc count requests to the persistent store have a
larger id1 working set than other association queries, and
hence make poorer use of the database’s buffer cache.

TAO’s writes are performed synchronously to the mas-
ter database, so writes from other regions include an
inter-region round trip. Figure 9 compares the latency
in two data centers that are 58.1 milliseconds away from
each other (average round trip). Average write latency
in the same region as the master was 12.1 msec; in the
remote region it was 74.4 = 58.1 + 16.3 msec.

Replication lag: TAO’s asynchronous replication of
writes between regions is a design trade-off that favors

read performance and throughput over consistency. We
observed that TAO’s slave storage servers lag their mas-
ter by less than 1 second during 85% of the tracing win-
dow, by less than 3 seconds 99% of the time, and by less
than 10 seconds 99.8% of the time.

Failover: Follower caches directly contact the
database when a leader is unavailable; this failover path
was used on 0.15% of follower cache misses over our
sample. Failover for write requests involves delegating
those requests to a random leader, which occurred for
0.045% of association and object writes. Slave databases
were promoted to be the master 0.25% of the time due to
planned maintenance or unplanned downtime.

9 Related Work

TAO is a geographically distributed eventually consis-
tent graph store optimized for reads. Previous distributed
systems works have explored relaxed consistency, graph
databases, and read-optimized storage. To our knowl-
edge, TAO is the first to combine all of these techniques
in a single system at large scale.

Eventual consistency: Terry et al. [33] describe
eventual consistency, the relaxed consistency model
which is used by TAO. Werner describes read-after-write
consistency as a property of some variants of eventual
consistency [35].

Geographically distributed data stores: The Coda
file system uses data replication to improve performance
and availability in the face of slow or unreliable net-
works [29]. Unlike Coda, TAO does not allow writes
in portions of the system that are disconnected.

Megastore is a storage system that uses Paxos across
geographically distributed data centers to provide strong
consistency guarantees and high availability [5]. Span-
ner, the next generation globally distributed database de-
veloped at Google after Megastore, introduces the con-
cept of a time API that exposes time uncertainty and
leverages that to improve commit throughput and provide
snapshot isolation for reads [8]. TAO addresses a very
different use case, providing no consistency guarantees
but handling many orders of magnitude more requests.

Distributed hash tables and key-value systems: Un-
structured key-value systems are an attractive approach
to scaling distributed storage because data can be easily
partitioned and little communication is needed between
partitions. Amazon’s Dynamo [10] demonstrates how
they can be used in building flexible and robust com-
mercial systems. Drawing inspiration from Dynamo,
LinkedIn’s Voldemort [4] also implements a distributed
key-value store but for a social network. TAO accepts
lower write availability than Dynamo in exchange for
avoiding the programming complexities that arise from
multi-master conflict resolution. The simplicity of key-

L. Lancia & G. Salillari 37 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Write Latency

58 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

hit lat. (msec) miss lat. (msec)
operation 50% avg 99% 50% avg 99%
assoc count 1.1 2.5 28.9 5.0 26.2 186.8
assoc get 1.0 2.4 25.9 5.8 14.5 143.1
assoc range 1.1 2.3 24.8 5.4 11.2 93.6
assoc time range 1.3 3.2 32.8 5.8 11.9 47.2
obj get 1.0 2.4 27.0 8.2 75.3 186.4

Figure 8: Client-observed TAO latency in milliseconds
for read requests, including client API overheads and net-
work traversal, separated by cache hits and cache misses.

0%

10%

20%

30%

40%

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

fre
qu

en
cy

write latency (msec)

remote region latency
master region latency

avg ping latency

Figure 9: Write latency from clients in the same region
as database masters, and from a region 58 msec away.

Follower capacity: The peak throughput of a follower
depends on its hit rate. Figure 7 shows the highest 15-
minute average throughput we observe in production for
our current hardware configuration, which has 144GB
of RAM, 2 Intel Xeon 8 core E5-2660 CPUs running at
2.2Ghz with Hyperthreading, and 10 Gigabit ethernet.

Hit rates and latency: As part of the data collection
process that was described in § 7, we measured latencies
in the client application; these measurements include all
network latencies and the time taken to traverse the PHP
TAO client stack. Requests were sampled at the same
rate in all regions. TAO’s overall hit rate for reads was
96.4%. Figure 8 shows the client-observed latencies for
reads. obj get has higher miss latencies than the other
reads because objects typically have more data (see Fig-
ure 6). assoc count requests to the persistent store have a
larger id1 working set than other association queries, and
hence make poorer use of the database’s buffer cache.

TAO’s writes are performed synchronously to the mas-
ter database, so writes from other regions include an
inter-region round trip. Figure 9 compares the latency
in two data centers that are 58.1 milliseconds away from
each other (average round trip). Average write latency
in the same region as the master was 12.1 msec; in the
remote region it was 74.4 = 58.1 + 16.3 msec.

Replication lag: TAO’s asynchronous replication of
writes between regions is a design trade-off that favors

read performance and throughput over consistency. We
observed that TAO’s slave storage servers lag their mas-
ter by less than 1 second during 85% of the tracing win-
dow, by less than 3 seconds 99% of the time, and by less
than 10 seconds 99.8% of the time.

Failover: Follower caches directly contact the
database when a leader is unavailable; this failover path
was used on 0.15% of follower cache misses over our
sample. Failover for write requests involves delegating
those requests to a random leader, which occurred for
0.045% of association and object writes. Slave databases
were promoted to be the master 0.25% of the time due to
planned maintenance or unplanned downtime.

9 Related Work

TAO is a geographically distributed eventually consis-
tent graph store optimized for reads. Previous distributed
systems works have explored relaxed consistency, graph
databases, and read-optimized storage. To our knowl-
edge, TAO is the first to combine all of these techniques
in a single system at large scale.

Eventual consistency: Terry et al. [33] describe
eventual consistency, the relaxed consistency model
which is used by TAO. Werner describes read-after-write
consistency as a property of some variants of eventual
consistency [35].

Geographically distributed data stores: The Coda
file system uses data replication to improve performance
and availability in the face of slow or unreliable net-
works [29]. Unlike Coda, TAO does not allow writes
in portions of the system that are disconnected.

Megastore is a storage system that uses Paxos across
geographically distributed data centers to provide strong
consistency guarantees and high availability [5]. Span-
ner, the next generation globally distributed database de-
veloped at Google after Megastore, introduces the con-
cept of a time API that exposes time uncertainty and
leverages that to improve commit throughput and provide
snapshot isolation for reads [8]. TAO addresses a very
different use case, providing no consistency guarantees
but handling many orders of magnitude more requests.

Distributed hash tables and key-value systems: Un-
structured key-value systems are an attractive approach
to scaling distributed storage because data can be easily
partitioned and little communication is needed between
partitions. Amazon’s Dynamo [10] demonstrates how
they can be used in building flexible and robust com-
mercial systems. Drawing inspiration from Dynamo,
LinkedIn’s Voldemort [4] also implements a distributed
key-value store but for a social network. TAO accepts
lower write availability than Dynamo in exchange for
avoiding the programming complexities that arise from
multi-master conflict resolution. The simplicity of key-

L. Lancia & G. Salillari 38 / 40

Fb Tao Introduction The Data Model Architecture Implementation Consistency & Failures Workload & Performance

Summarizing

Read latency
• Separate cache from database
• Graph aware cache

Efficiency at scale
• Subdividing Data Centers

Write timeliness
• Write trough cache
• Async replication

Read availability
• Multiple data sources

L. Lancia & G. Salillari 39 / 40

Thank You

Facebook Tao - A Distributed Data Store for the Social Graph

	The Data Model
	Architecture
	Implementation
	Consistency & Failures
	Workload & Performance

