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1 Abstract

Power consumption is a troublesome design constraint for HPC systems. If
current trends continue, future petaflop systems will require 100 megawatts of
power to maintain high-performance. To address this problem the power and
energy characteristics of high performance systems must be characterised. The
main idea of this project is to design a methodology for the optimal selection
(minimal number of systems that maximise performance and minimise energy
consumption) of a network topology for high performance applications using
ultra-low-voltage microprocessors platforms (Intel R© AtomTM Processor E3825
- Minnowboard).

2 Introduction

Computer technology has made incredible progress in the roughly 60 years since
the first general-purpose electronic computer was created. Today, less than 500
usd will purchase a personal computer that has more performance, more main
memory, and more disk storage than a computer bought in 1985 for 1 million
dollars. This rapid improvement has come both from advances in the technology
used to build computers and from innovation in computer design. [1]

As we have seen it was around the years 2003 to 2005 that a dramatic change
seized the semiconductor industry and the manufactures of processors. The in-
creasing of computing performance in processors, based on simply screwing up
the clock frequency, could not longer be hold ed. Scaling of the technology
processes, leading to smaller channel lengths and shorter switching times in the
devices, and measures like instruction-level-parallelism and out-of-order process-
ing, leading to high fill rates in the processor pipelines, were the guarantors to
meet Moore’s law.[2]

The answer of the industry to that development, in order to still meet
Moore’s law, was the shifting to real parallelism by doubling the number of
processors on one chip die. This was the birth of the multi-core area. The
benefits of multi-core computing, to meet Moore’s law and to limit the power
density at the same time, at least at the moment this statement holds, are also
the reason that parallel computing based on multi-core processors is underway
to capture more and more also the world of embedded processing.[3]
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Where do we find these task parallelism in embedded systems? A good
example are automotive applications Multi-core technology in combination with
a broadband efficient network system offers the possibility to save components,
too, by migrating functionality that is now distributed among a quite large
number of compute devices to fewer cores.

The purpose of this paper is a case study to explore the applicability to
apply MPI as the communication engine for distributed embedded applications.
We setup MPI on a distributed embedded platform and experiment with an the
MPI benchmark algorithm

3 Theoretical Framework

In recent years several mature techniques for high level abstractions for inter-
processor communication are available, such as Message Passing Interfaces (MPI)
[2, 1], the problem is that these abstraction layers require extensive system
resources with comprehensive operating systems support, which may not be
available to an embedded platform.

Recent researches [4] [6] [5] describe proof-of-concept MPI implementations
targeting embedded systems, showing an increasing interest in the topic. These
implementations have a varying degree of functionality and requirements. These
papers also discuss different ways to address the limitations found in typical em-
bedded systems. For example, in the eMPl/eMPICH project [5] the main focus
is to port MPICH to an embedded platform and reduce its memory footprint by
removing some MPI functions. Azequia-MPI [6] is an MPI implementation that
uses threads instead of processes making MPI applications more lightweight,
however, it requires an operating system that supports threads, which in em-
bedded systems it is not always available.

However in recent years there has been some studies in this field. One of
the firsts is the adaption of the MPI protocol for embedded systems , LMPI
[7] (Light Message Passing Interface). The noble idea of LMPI is separation
of its server part (LMPI server) and the very thin client part (LMPI client).
Both parts can reside on different hardware or on the same hardware. Multiple
clients can be associated with a server. LMPI servers support full capability
of MPI and can be implemented using pre-existing MPI implementation. Al-
though LMPI is dedicated to embedded systems, to demonstrate the benefits of
LMPI and show some initial results, they built LMPI server using MPICH on
a non-embedded system. LMPI client consumes far less computation and com-
munication bandwidth than typical implementations of MPI, such as MPICH.
As a result, LMPI client is suitable for embedded systems with limited com-
putation power and memory. They demonstrated the low overhead of LMPI
clients on Linux workstations, which is as low as 10% of MPICH for two bench-
mark applications. LMPI clients are highly portable because they don’t rely on
the operating system support. All they require from the embedded system is
networking support to the LMPI server.

All these research always talk about the lack of an operating system for Dis-
tributed System, However there are some works related to this area[8]. Those
are the distributed operating systems. The architecture and design of a dis-
tributed operating system must realise both individual node and global system
goals. Architecture and design must be approached in a manner consistent with
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separating policy and mechanism. In doing so, a distributed operating system
attempts to provide an efficient and reliable distributed computing framework
allowing for an absolute minimal user awareness of the underlying command
and control efforts

With these techniques, distributed programming can be made much more
efficient. However, very few researchers have studied high level distributed pro-
gramming in embedded systems

4 Objective

The efficient realisation of applications with multi-core or many-core proces-
sors in an embedded system is a great challenge. With application-specific
architectures it is possible to save energy,reduce latency or increase throughput
according to the realised operations, in contrast to the usage of standard CPU’s.
Besides the optimisation of the processor architecture, also the integration of
the cores in the embedded environment plays an important role. This means,
the number of applied cores and their coupling to memories or bus systems has
to be chosen carefully, in order to avoid bottlenecks in the processing chain.
This is the main problem we are going to face during this research process.

The main objective will be to design a methodology for the optimal selection
(minimal number of systems that maximise performance and minimise energy
consumption) of a network topology for high performance applications using
ultra-low-voltage microprocessors platforms (Intel R© AtomTM Processor E3825)

In order to make the experiments we will create a distributed computer
system based on multiple Intel R© AtomTM Processor E3825 (the configura-
tion change will not be automated). The figure 4 shows a basic sketch of the
distributed system we will create. A distributed computer system consists of
multiple software components that are on multiple computers, but run as a sin-
gle system. The computers that are in a distributed system can be physically
close together and connected by a local network, or they can be geographically
distant and connected by a wide area network. Our experiments will be ad-
dressed in a lab network (same room). Part of our task to achieve our main
goal will be to make such a network work as a single computer

5 Justification

The need of more complex and smart applications (they must adapt their per-
formance as well as power) has risen the bar to create distributed systems based
on parallel embedded platforms.

By definition: A distributed system consists of a collection of autonomous
computers, connected through a network and distribution middle-ware, which
enables computers to coordinate their activities and to share the resources of
the system, so that users perceive the system as a single, integrated computing
facility.

Advantages:

1. Partioning Workload: By partitioning the workload onto multiple pro-
cessors, each processor is now responsible for only a fraction of the work-
load. The processors can now afford to slow down by dynamic voltage
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scaling (DVS) to run at more power-efficient states, and the degraded
performance on each processor can still contribute to an increased system-
wide performance by the increased parallelism.

2. Heterogeneous HW: Another advantage with a distributed scheme is
that heterogeneous hardware such as DSP and other accelerators can fur-
ther improve power efficiency of various stages of the computation through
specialisation.

Disadvantages:

1. Network: Despite the fact the distributed systems may have many at-
tractive properties, they pay a higher price for message-passing commu-
nications. Each node now must handle not only communication with the
external world, but also extra communication on the internal network. As
a result, even if the actual data payload is not large on an absolute scale,
the communication appears very expensive and does not scale to a few
more nodes

2. Lack of optimised OS: A typical embedded system often does not
contain an operating system. Crafting distributed programs on such a
bare-bone platform is extremely difficult and error-prone. Although many
higher-level abstractions such as Message Passing Interfaces (MPI) have
been proposed to facilitate distributed programming, these abstraction
layers require extensive system resources with comprehensive operating
systems support, which may not be available to an embedded platform

However in recent years we have seen an emergence of a new class of full-
fledged embedded systems (they are fully loaded with sufficient system resources
as well as networking and other peripheral devices, and a complete version of the
operating system with network support) In addition, they are typically designed
with power-management technology in order to extend the battery life

With these gaps closed there might be a chance to merge the parallel and
distributed paradigms on the embedded world. A merging point of technologies
from different domains often inspires technology innovations in new domains.

6 Development

According to these in consideration there are multiple scenarios to test the
capability of an embedded distributed system:

• Compare an Embedded system with generic SW (Linux base OS (Fedo-
ra/Ubuntu/Debian) and generic MPI protocol (MPICH)) against a regular
development system (with the same OS and MPI tools) in order to check
the gap in the multiple systems

• Compare an Embedded system with custom SW (Linux from scratch sys-
tem and MPI for embedded (LMPI)) against a regular development sys-
tem (with the same OS and MPI tools) in order to check the gap in the
multiple systems
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• Compare an Embedded system with a distributed operating system against
the same embedded system with custom SW (Linux from scratch system
and MPI for embedded (LMPI)) in order to check the gap in the multiple
systems

For this report we will execute the first experiment.
The platform we will use for our experiment is the Intel R© AtomTM Proces-

sor E3825. Their main characteristics are described on 1. The main limitation
will be the number of Cores that we have. This is me minimal number of cores
we could have to run parallel applications. [9]

Procesor Number E3825
#Cores 2
#Threads 2
Clock SPeed 1.33GHz
L2 Cache 1MB
Instruction Set 64 bits

Table 1: Minnowboard CPU characteristics

The operating system we will use is the Fedora 19 system, the description of
the system is listed on the fedora project site home page (http://fedoraproject.org)

The benchmark we will use to measure the performance is MPIbench. This
is a program to measure the performance of some critical MPI functions. By
critical it means that the behavior of these functions can dominate the run time
of a distributed application. MPBench has now been integrated into LLCbench
(Low Level Characterisation Benchmarks)

The MPIfunctions that it stress are:

• MPI Send/MPI Recv Bandwidth (Kb/second vs. bytes)

• MPI Send/MPI Recv Application latency or Gap time (us vs. bytes)

• MPI Send/MPI Recv Roundtrip or 2 * Latency (trns/second vs. bytes)

• MPI Send/MPI Recv() BidirectionalBandwidth (Kb/second vs. bytes)

• MPI Bcast broadcast (Kb/second vs. bytes)

• MPI Reduce reduction (sum) (Kb/second vs. bytes)

• MPI AllReduce reduction (sum) (Kb/second vs. bytes)

• MPI Alltoall Each process sends to every other process (Kb/sec vs. bytes)

7 Results

The results after the execution of the benchmarks are described on the Appendix
section (for minnow board and then for development board):

• MPI Send/MPI Recv Bandwidth (Kb/second vs. bytes)

• MPI Send/MPI Recv Application latency or Gap time (us vs. bytes)
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• MPI Send/MPI Recv Roundtrip or 2 * Latency (trns/second vs. bytes)

• MPI Send/MPI Recv() BidirectionalBandwidth (Kb/second vs. bytes)

• MPI Bcast broadcast (Kb/second vs. bytes)

• MPI Reduce reduction (sum) (Kb/second vs. bytes)

• MPI AllReduce reduction (sum) (Kb/second vs. bytes)

• MPI Alltoall Each process sends to every other process (Kb/sec vs. bytes)

As seen on the results presented on the AllReduce reduction MPI Allreduce
combines values from all processes and distributes the result back to all pro-
cesses) graphs the dev boar can support 8X times the maximum speed that
Minnowboard, then in both platforms the drop of speed is extremely fast until
reach a minimal point of stability with packages grater than 1.04e+06 Bytes.
In the first approach we could assume that the Minnowboard has a poor per-
formance, however if we look the graph from a higher perspective the reality is
that the Minnowboard can sustain a better quality of transaction. The dramatic
drop after the increment of 1.04e+06 Bytes is not reflected on the Minnowboard.
On the Minnowboard the speed is the same until the size of the packages reach
the 3.3e+07 Bytes.

A similar behavior occurs on the Alltoall (Each process sends to every other
process).

MPI Alltoall is a collective operation in which all processes send the same
amount of data to each other, and receive the same amount of data from each
other. The operation of this routine can be represented as follows, where each
process performs 2n (n being the number of processes in communicator comm)
independent point-to-point communications (including communication with it-
self).

Algorithm:

MPI Comm size (comm, &n ) ;
f o r ( i = 0 , i < n ; i++)

MPI Send ( sendbuf + i ∗ sendcount ∗ extent ( sendtype ) ,
sendcount , sendtype , i , . . . , comm) ;

f o r ( i = 0 , i < n ; i++)
MPI Recv ( recvbuf + i ∗ recvcount ∗ extent ( recvtype ) ,

recvcount , recvtype , i , . . . , comm) ;

Each process breaks up its local sendbuf into n blocks - each containing
sendcount elements of type sendtype - and divides its recvbuf similarly according
to recvcount and recvtype. Process j sends the k-th block of its local sendbuf
to process k, which places the data in the j-th block of its local recvbuf. The
amount of data sent must be equal to the amount of data received, pairwise,
between every pair of processes.

After knowing this we can see on the graphs an unusual behavior. On the
Development board results there is a drop on the speed after the transportation
of 32 Kb packages, meanwhile on the Minnowboard the speed will not pass the
1.4e+06 ( 8 times slower than the dev board ) in 32KB packages the minnow
do not present this drop.
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Although this is not a rule for all the tests. In the case of Bidirectional
Bandwidth , the code send and receive in a bidirectional way (really simple
algorithm) :

Algorithm:

i f ( am i the master ( ) )
{

TIMER START;
f o r ( i =0; i<cnt ; i++)

{
mp irecv ( dest rank , 2 , destbuf , bytes , &reque s ta r ray [ 1 ] ) ;

mp isend ( dest rank , 1 , sendbuf , bytes , &reque s ta r ray [ 0 ] ) ;
MPI Waitall (2 , r eques tar ray , s t a t u s a r r a y ) ;

}

e l s e i f ( a m i t h e s l a v e ( ) )
{

f o r ( i =0; i<cnt ; i++)
{

mp irecv ( source rank , 1 , destbuf , bytes , &reque s ta r ray [ 0 ] ) ;
mp isend ( source rank , 2 , sendbuf , bytes , &reque s ta r ray [ 1 ] ) ;
MPI Waitall (2 , r eques tar ray , s t a t u s a r r a y ) ;

}

At the end they use MPI Waitall. MPI Waitall blocks until all communica-
tion operations associated with active handles in the list complete, and returns
the status of all these operations (this includes the case where no handle in the
list is active).

The problem is that in the case of Minnowboard there is an important drop
(in the middle of 1Kb and 32Kb). This problem might be caused do to a
hardware/network problem, it makes sense due to the fact that they are waiting
to all the co-processors. There are more cores inside the CPU of the development
board than on the Minnowboard, this could generate the drop on the speed.

The only benchmark that shows a better performance all the time on the
dev board is the latency. In this benchmark the definition of latency is the time
to launch a message in the network’s buffer:

Algorithm:

i f ( am i the master ( ) )
{

TIMER START;
f o r ( i =0; i<cnt ; i++)
{

i f ( f l u s h & FLUSH BETWEEN ITERATIONS)
f l u s h a l l ( 1 ) ;

mp send ( dest rank , 1 , sendbuf , bytes ) ;
}
TIMER STOP;
mp recv ( dest rank , 2 , destbuf , 4 ) ;
t o t a l = TIMER ELAPSED;
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t o t a l −= c a l i b r a t e c a c h e f l u s h ( cnt ) ;
r e turn ( t o t a l /( double ) cnt ) ;

}

In this specific benchmark we can see that the Dev Board is highly better
than the Minnowboard. However this is an expected behavior. Embedded sys-
tems have traditionally been much more sensitive to both the interrupt latency
and Central Processing Unit (CPU) overhead involved in servicing interrupts as
compared to conventional Personal Computers (PC).

8 Conclusion

This case of study demonstrate not only the capability of an embedded platform
(Intel R© AtomTM Processor E3825 - Minnowboard) to execute a heavy MPI
workload , but the capability for the system to maintain a better performance
(even with high volume packages). After this case of study we demonstrate
that an embedded system might be use full for HPC applications, however the
latency is a major problem that require HW reconfiguration.

One of the future works will have to cover the last two points: (so far we
have just cover the first one):

• Compare an Embedded system with generic SW (Linux base OS (Fedo-
ra/Ubuntu/Debian) and generic MPI protocol (MPICH)) against a regular
development system (with the same OS and MPI tools) in order to check
the gap in the multiple systems

• Compare an Embedded system with custom SW (Linux from scratch sys-
tem and MPI for embedded (LMPI)) against a regular development sys-
tem (with the same OS and MPI tools) in order to check the gap in the
multiple systems

• Compare an Embedded system with a distributed operating system against
the same embedded system with custom SW (Linux from scratch system
and MPI for embedded (LMPI)) in order to check the gap in the multiple
systems

After this will will be able to start the measurement of power consumption.
This might be a key characteristic that make the embedded systems a possi-
bility to establish parallel/distributed programming paradigms to facilitate the
development of distributed embedded applications.
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Figure 1: All reduce minnowboard
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Figure 2: All reduce Dev Board



 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1  32  1024  32768  1.04858e+06  3.35544e+07

K
B

/s
ec

Message Size in Bytes

Performance of MPI Alltoall of minnow-MAX.amr.corp.intel.com-x8664mpi

"minnow-MAX.amr.corp.intel.com-x86_64_mpi_alltoall.dat"

Figure 3: All to all minnowboard
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Figure 4: All to all Dev Board



 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 1  32  1024  32768  1.04858e+06  3.35544e+07

K
B

/s
ec

Message Size in Bytes

Performance of MPI Allreduce of minnow-MAX.amr.corp.intel.com-x8664mpi

"minnow-MAX.amr.corp.intel.com-x86_64_mpi_allreduce.dat"

Figure 5: Bandwith on minnowboard
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Figure 6: Bandwith on Dev Board
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Figure 7: BidirectionalBandwidth minnowboard
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Figure 8: BidirectionalBandwidth Dev Board
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Figure 9: Broadcast minnowboard
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Figure 10: Broadcast Dev Board
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Figure 11: Application latency or Gap time on minnowboard
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Figure 12: Application latency or Gap time on Dev Board
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Figure 13: Roundtrip or 2 * Latency on minnowboard
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Figure 14: Roundtrip or 2 * Latency on Dev Board
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