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Introduction

Graphs: Possible Sequencing of Nucleotides

Example: Hidden Markov Model

Previous work: Bubble

String 1Source Sink

String 2
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Bidirected, Digraph, and Biedged Graph

Bidirected Graph D = (VD ,ED): each endpoint of every edge has an
independent orientation indicating incidents with left or right side of a
given vertex

Digraph: Bidirectedgraph where each edge connects a left and right
side

Biedged Graph: A graph with two types of edges, black and gray,
such that each vertex is incident with at most one black edge

Lemma 1

For any acyclic biedged graph B(D) there exists an isomorphic biedged
graph B(D) such that D is a directed acyclic graph
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Graph Examples
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Superbubble

A Superbubble is a more complex subgraph type in which a set of paths
start and end at common sink nodes:

XSource Sink

reachability

matching

acyclicity

minimality
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Superbubble Example
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Snarl

In order to generalize a superbubble

Snarl: 2 Black-Edge-Connected graph (2-BEC)

Two non-opposite vertices are a snarl if

separable
minimality

Tip: A vertex on a biedged graph with a grey edge

Ultrabubble: If the subgraph X induced by a snarl is acyclic and
contains no tips

Lemma 2

For any superbubble (x,y) in a digraph D, the pair set x’ =
(x,right),y’=(y,left) is an ultrabubble in B(D), a biedged graph
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Cactus Graph

Definition: A graph in which any two vertices are at most two-edge
connected

Each edge is apart of at most one simple cycle

Suppose we have a graph G which is not a cactus graph.

We can create a mapping from G → G ′; a graph homomorphism that
maps each vertex in set VG into V ′

G

The set of vertices mapped to in G ′ is 2 edge connected
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Chain Pairs, Bridge Pairs, and Bridge Forest

Chain pair

Project to same vertex in cactus homomorphism
black edges project to same simple cycle

Bridge Forest

Graph resulting from contracting simple cycles

Bridge pair

If pair of vertices project to the same vertex in bridge forest and both
incident black edges are bridges
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Biedged graph, Contracted Gray Edges, Cactus Graph,
Bridge Forest
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Useful Theorems and Lemmas

Theorem

The set of snarls in B(D) a bidirected graph is equal to the union of chain
pairs and bridge pairs

Lemma

A snarl x,y in a bidirected graph is an ultrabubble iff its net graph and the
net graph of each snarl contained in x,y is acyclic and bridgeless

Lemma

For a chain pair or bridge pair x,y in B(D) the set of contained snarls is
equal to its contained chain pairs

Theorem

A snarl x,y in B(D) a bidirected graph is an ultrabubble iff its net graph
and the net graph of each its contained chain pairs is acyclic and brdgeless
(follows immediately from two lemmas)
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Algorithm

Given a bidirected graph B(D) we can

1 Calculate the Cactus Graph C (D)

2 Calculate the Cactus Tree

3 Use depth first search to determine, for each chain pair whether its
net graph and the net graph contained is acyclic and bridgeless (using
Theorem to determine ultrabubble)

4 Calculate Bridge Forest

5 For each vertex x in bridge forest, calculate if net graph and
contained chain pairs are acyclic and bridgeless reporting bridge pair
as ultrabubble if true.
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Time Complexity and Implementation for Genetic Sites

The time complexity for this problem is O(#edges + #vertices) in a
bidirected graph.
Superbubbles have a nested relationship: Easy to get a tree type structure
given a graph
Bidirected Graphs: Can be constructed from genome variation ”sites” or
alternatives at various parts of the genome.
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Conclusions from Paper

Solves an important problem in using graphs to represent genetic
variation

Large majority of sites are either invariant or described by simple,
top-level ultrabubbles

More complex structures might be needed to represent inversions,
translocations, etc.

Other than subclassification, error correction algorithms can be used
to reduce complexity of graph
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My Takeaways

Top level ultrabubbles: only 4.9 percent, doesn’t seem like majority

Summary information to describe variation in genome

Interpretation of superbubbles, ultrabubbles, snarls, etc. unclear to me

Outside resources needed to understand graph theory, simpler
visualizations may have been nice
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Useful Resources

Paten, Benedict, et al. ”Superbubbles, ultrabubbles, and cacti.”
Journal of Computational Biology 25.7 (2018): 649-663.

sagemath.org or cocalc.com Software for using R and other
programming languages to do graph theory

https://www.youtube.com/user/DrSaradaHerke/
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