LIMITS

If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0}$, or $\frac{\infty}{\infty}$
then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \quad \lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
Applications of Differentiation

$$
V=\frac{4}{3} \pi r^{3} \quad V=\frac{1}{3} h \pi r^{2}
$$

Integration

$$
\begin{gathered}
\int u d v=u v-\int v d u \quad \frac{1}{b-a} \int_{a}^{b} f(x) d x \\
\frac{1}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x-2} \\
\quad \int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{gathered}
$$

Applications of Intecration

$\pi \int_{a}^{b}\left(R_{2}\right)^{2}-\left(R_{1}\right)^{2} d x$

Infinite Series

Monotonic Sequence A sequence $\left\{a_{n}\right\}$ that is nondecreasing (i.e. $\{1,1,2,3\}$) where

$$
a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n} \leq \cdots
$$

or if terms are nonincreasing like

$$
a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{n} \geq \cdots
$$

Bounded Monotonic Sequence A bounded monotonic sequence converges. A sequence is bounded if it bounded above by M and below by N such that $N<a_{n}<M, \forall n \geq 0$.

Infinite Series Infinite series are defined as

$$
S=\sum_{n=1}^{\infty} a_{n}
$$

where S_{n} denotes the $n^{\text {th }}$ partial sum

Convergence: For an infinite series $S=\sum a_{n}$, where S_{n} denotes the $n^{\text {th }}$ partial sum, if the sequence $\left\{S_{n}\right\}$ converges to S then the series $S=\sum a_{n}$ converges. The limit
S is called the sum of the series.

Integral Test: For an infinite series $S=\sum f(x)$ if the improper integral $\int f(x)=L$ converges then the series converges and if the improper integral $\int f(x)$ does not exist or is infinity, it diverges. It does not give any information about the actual sum of the series.

P series:

$$
N=\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots
$$

$P=1$ diverges $P>1$ converges $P<1$ diverges $0>P>1$ diverges

Taylor Polynomials If f has n derivatives at c , then the polynomial

$$
P_{n}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

is defined as the nth degree taylor polynomial.

Taylor Series If f is infinitely differentiable, then f is represented exactly by the series, centered at $x=c$

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

Parametric Equations
$x=r \cos \theta$

Distance Formula:

$$
y=r \sin \theta
$$

$$
\Delta s=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$x(t)=x_{0}+v_{x 0}+\frac{1}{2} a t^{2}$ $y(t)=y_{0}+v_{y 0}+\frac{1}{2} a t^{2}$
$\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$

Projectile Motion

Maximum Height:

$$
H=\frac{v_{o}^{2} \sin \theta^{2}}{2 g}
$$

Horizontal Range:

$$
R=\frac{v_{o}^{2} \sin 2 \theta}{g}
$$

Flight Time:

$$
t=\frac{2 v_{y 0} \sin \theta}{g}
$$

Example

Eliminating the Parameter:
Finding a rectangular equation that represents the graph of a set of parametric equations is called eliminating the parameter.

1. Parametric Equations $\quad x=t^{2}-4 \quad y=\frac{t}{2}$
2. Solve for t in one equation.

$$
x=(2 y)^{2}-4
$$

3. Rectangular Equation

$$
x=4 y^{2}-4
$$

Polar Equations

$$
\begin{array}{ll}
\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta & \frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta \\
x=r \cos \theta & x^{2}+y^{2}=r^{2} \\
y=r \cos \theta & \tan \theta=\frac{y}{x}
\end{array}
$$

Vectors

Angle Between Two Vectors

If θ is the angle between two nonzero vectors \vec{u} and \vec{v}, then

$$
\cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}
$$

Alternatively,

$$
\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

This form can be used to calculate the dot product without knowing the component form of the vectors.

Vector-Valued Functions

A function of the form:

$$
\vec{r}(t)=f(t) \vec{i}+g(t) \vec{j}+h(t) \vec{k}
$$

Can also be written as:

$$
\vec{r}(t)=\langle f(t), g(t), h(t)\rangle
$$

Projectile Motion equations (without air resistance) can be written as Vector Valued Functions:

$$
\begin{aligned}
\vec{s}(t) & =\left\langle x_{o}+v_{x o} t, y_{o}+v_{y o} t-\frac{1}{2} g t^{2}\right\rangle \\
\vec{v}(t) & =\left\langle v_{x o}, v_{y o}-g t\right\rangle \\
\vec{a}(t) & =\langle 0,-g\rangle
\end{aligned}
$$

Differential Equations

- Separable Differentiable Equations

1. Separate the variables into standard form:

$$
F(y) d y=G(x) d x
$$

- First Order Differentiable

1. Rearrange equation into standard form:

$$
y^{\prime}+p y=q
$$

2. Integrating factor:

$$
u(x)=e^{\int p d x}
$$

3. Multiply both sides:

$$
\begin{gathered}
u y^{\prime}+u p y=u q \\
(u y)^{\prime}=u q
\end{gathered}
$$

4. Integrate:

$$
u y=\int(u q) d x
$$

- Euler's Method Formula

$$
\begin{gathered}
x_{n+1}=x_{n}+h \\
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)
\end{gathered}
$$

$$
\begin{array}{r}
1-(x-1)+(x-1)^{2}-(x-1)^{3}+(x-1)^{4}-\cdots+(-1)^{n}(x-1)^{n}+\cdots \\
1-x+x^{2}-x^{3}+x^{4}-x^{5}+\cdots+(-1)^{n} x^{n}+\cdots \\
(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\cdots+\frac{(-1)^{n-1}(x-1)^{n}}{n}+\cdots \\
1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots+\frac{x^{n}}{n!}+\cdots \\
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\cdots \\
1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\cdots \\
x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\cdots+\frac{(-1)^{n} x^{2 n+1}}{2 n+1}+\cdots \\
x+\frac{x^{3}}{2 \cdot 3}+\frac{1 \cdot 3 x^{5}}{2 \cdot 4 \cdot 5}+\frac{1 \cdot 3 \cdot 5 x^{7}}{2 \cdot 4 \cdot 6 \cdot 7}+\cdots+\frac{(2 n)!x^{2 n+1}}{\left(2^{n} n!\right)^{2}(2 n+1)}+\cdots \\
1+k x+\frac{k(k-1) x^{2}}{2!}+\frac{k(k-1)(k-2) x^{3}}{3!}+\frac{k(k-1)(k-2)(k-3) x^{4}}{4!}+\cdots
\end{array}
$$

- Limits at infinity
- Three possibilities for horizontal asymptotes
- Removeable vs. non-removeable discontinuity
- One-sided limits
- L'Hôpital's Rule
- Conditions for use

DIFFERENTIATION

- Definition of derivative at a point
- Derivatives of polynomials, trig, and exponential functions
- Differentiation rules
- Equation of a tangent line to a curve
- Interpreting the signs of the first and second derivative
- Find the min or max of a function
- Sketching the first and second derivative from a graph
- Implicit differentiation

Applications of Differentiation

- Optimization
- Distance, area, volume
- Newton's Method
- Related Rates
- Distance, area, volume, depth, ladder, and shadows

Integration

- Reimann Sums
- Difference between area and definite integral
- Integration by substitution
- Integration by parts
- Partial fractions
- Distinct linear, repeated linear, quadratic and repeated quadratic factors
- Improper integrals
- Volumes of revolution
- Work done by a variable force
- Average value of a function
- Arc length of a curve
- Area between two curves

Infinite Series

- P-series
- Geometric Series
- Convergence or divergence
- Integral test, ratio test, comparison test and root test
- Taylor polynomial approximation with desired accuracy
- Taylor and Maclaurin series for elementary functions
- Radius of convergence
- Interval of convergence

Parametric Equations

- Converting to/from rectangular functions
- Difference between $\frac{d y}{d x}, \frac{d y}{d t}$ and $\frac{d x}{d t}$
- Second derivative of a parametric equation
- Arc length
- Projectile Motion: Range, hangtime, and max height

Polar Equations

- Converting to/from rectangular functions
- Area and arc length of polar functions

VECTORS

- Dot product of two vectors
- Differentiation and integration of vector-valued functions (Initial value problems)
- Tangential acceleration and centripetal acceleration

Differential Equations

- Logistic differential equations and population growth
- Standard form of first order linear differential equations
- Solve by integrating factor

