
A Study in Percolation Models and Algorithms

Victor Daniel Rice
Advisor Dr. Tim Callahan

Embry-Riddle Aeronautical University

Department of Arts and Sciences

April 30, 2014

Abstract

By adapting a previously written percolation model in C, the threshold probabilities for square,
triangular, and cubic lattice types were confirmed. An algorithm to count the distribution of cluster
sizes at a variety of percolation probabilities was developed, and the expected trends towards the
so called infinite cluster was achieved. An equivalent bond percolation model was adapted to the
original site algorithm, and by treating occupied bonds as springs, a total compression trend for
the model was constructed, which implied that structures under the boundary conditions that were
imposed does not have behavior that changes the total compression constant significantly at the
percolation threshold.

1 Introduction

Percolation theory is the description of a collective system of clusters in a particular lattice structure. It
is typical for percolation models to be discussed in terms of probabilities which represent the likelihood
of each particular site or connecting bond in that lattice to be occupied. If sites or bonds are filled in
a random order, it is analogous to saying that each bond or site is being filled with a particular proba-
bility. In example, if we have 100 sites to be filled, and we fill 30 of these sites in a random order, this
is mathematically the same as filling each site with a 30% probability. This has been adapted into the
numerical models in this project by using a random number generator to order sites or bonds to be filled
through each iteration of the function permutation.

To examine the effects of percolation, the tendencies of cluster locations and sizes are typically exam-
ined. A cluster is defined as a group of occupied sites or bonds that affectively create a pathway through
them without disruption from an unoccupied site or bond. Depending on what lattice structure is in
question, there is a particular probability, typically called the percolation or threshold probability, in
which there is a rapid increase in the size of the largest cluster in that lattice. This value can be most
easily found numerically, and when the probability is below this threshold, that structure is said to be
subcritical. Similarly, when the probability is greater than the threshold value, the structure is said to
be supercritical. During the supercritical phase the lattice approaches percolation, or rather, in the case
of non-continuous boundary conditions, when something can move through one edge of the lattice to the
opposing edge through occupied bonds or sites. An example of this for a square lattice site percolation
can be seen in Fig. I. (6)

1

Figure 1: (a) Subcritical Probability (b) Threshold Probability P=.593 (c) Supercritical Probability

For this project I began by using a previously created model (7) to understand not only the fundamentals
of programming in C, but the structure of the ”Fast Monte Carlo Method”. I recreated this model and
annotated the code in my own words to describe my understanding of its structure and operation. The
next step was to confirm the validity of the code, and for this I chose to run a model of a 150 X 150 square
site lattice. The results of this can be seen as Fig. 3. After a full understanding of the methodology of
this code was gained, I began making modifications.

The first modification that was made was the transition from the square lattice routine to a routine for
a cubic lattice. This required changes to the boundaries routine in which the indexes for neighboring
sites were defined. Once the percolation threshold values for this structure were confirmed (see Fig. 4)
modifications for a two dimensional triangular lattice were made. The triangular modification proved to
be an exercise in equivalent geometry analysis as well. Therefore, the structure was treated as a square
lattice with diagonal bonds so as to insure the appropriate six nearest neighbors (Fig. 2). This allows
us to use the same program for the previous two geometries with a simple modification the boundaries
routine to have different neighbors.

Figure 2: Bend and Rotate Equivalent Geometry for Triangular Lattice with Nearest Neighbors

After I had gained familiarity with a variety of geometries it was decided that it would be of interest
to not only examine the size of the largest cluster in the structure as a function of probability, but to
examine the distribution of cluster sizes at particular probabilities. This was done by writing a new
subroutine that would be called at a particular iteration of percolate, which as a fraction of the total
number of sites would represent that probability. The routine would then total how many clusters of each
size were present at that point. This was done only for the square lattice, and by examining the cluster
size distributions before, at, and after the threshold probability the expected trends were examined.

Up until this point, all interest was in the percolation of sites in different lattice structures. The next
challenge was to examine an equivalent bond percolation problem and to treat each one of the bonds as
a spring of constant value k. This required finding an equivalent geometry that would allow us to use the
same percolate routine as before, but modifying percolate to store k-values of each vertical row of bonds.

2

A new routine, ktot, was nessisary to determine the total compression constant for each iteration.

The equivalent geometry for the bond percolation model requires us to separate the horizontal and ver-
tical bonds from one another due to their differences in dimensionality. Take for example an original
square site model of LXL sites. The number of horizontal bonds per row in this case is L− 1, where are
the vertical bonds still contain L entries per row. This means we can treat the system as two equivalent
site percolation problems (Fig. 3). It was necessary to decide on what sort of boundary conditions
this new model would have. In the previous models we had assumed periodic boundaries conditions for
all sides of the structure, but in order to examine a total compression constant, it was necessary that
terminal boundary conditions existed at the top and bottom of the vertical bonds for a compression to
actually exist. A byproduct of this was that the number of rows of the vertical columns would be L− 1,
while the horizontal still had a total of L rows.

Figure 3: Equivalent Grid System for Site to Bond Transformation

The routine percolate was modified to hold a new variable, krow which would store the number of oc-
cupied bonds in a particular row with each iteration given by the index of krow. At the end of each
iteration, percolate would then call the function ktot to determine the total compression spring constant
value using the values of krow for vertical rows only (Eqn. 1). It was also determined that if a particular
vertical row did not contain a single occupancy, then the compression constant would be zero given the
instability of the material.

1

ktot
=

1

kvalue
∗ (1

krow[1]
+

1

krow[3]
.+ ...

1

krow[L− 1]
) (1)

We expected that the total compression value should start at zero, jump to a small value at a particular
probability, and then steadily increase until it reaches the original spring constant value k at probability
equal to one.

3

2 Results and Analysis

The initial algorithm begins by defining its dimensionality (L) and the total number of sites (N = L∗L).
Then memory is allocated to the arrays ptr[N], which will hold the cluster sizes and allow the routine to
determine if a particular site is a root site, nn[N][number of nearest neighbors] which will tell us what
portions of ptr are which neighbors, and finally order[N] which is used to randomize the order in which
sites (or bonds) will be filled. In the function boundaries we define the location of the neighbors as well
as invoke periodic boundary conditions to the sides of the lattice. For example, in the case of the square
lattice we map the right neighbor of the far right column to the site on the far left of the same row, and for
the top neighbor of the top most row, we define the top neighbor to be the entry at the very bottom of that
column. These conditions were modified for each of the lattice types that were examined (See Appendix).

In the function permutation, through the use of two indexing variables and a placeholder variable, temp,
order can be filled so that percolate will have a random order to assign occupied sites into the lattice
with. The recursive function findroot is defined to be used when the algorithm examines whether an
occupied site is a root site or not. percolate begins by defining six local integers and another integer
big, which will hold the size of the largest cluster. Initially, all locations in ptr are defined to be empty,
which is a global variable defined to be equal to −(N + 1), this is done because negative values inside
ptr mean that the indexed location is occupied, and the value of that number dictates how many sites
are in the cluster whose root is that particular value of ptr. Therefore, it would be impossible to have
a cluster larger than N . The function then fills the first chosen site with a value of -1 and defines the
index of this value to be an integer s1. Then another integer s2 is defined under an iteration through all
the numbers of nearest neighbors and calls findroot to tell if any of the neighbors are non-empty. If a
particular neighbor is occupied, then the routine finds its root and adds the indexed site and all members
of its cluster to the cluster of the neighbor. However, if the current site in question belongs to a cluster
of a larger size than its neighbor, then the neighbor is added to the current sites cluster and assumes its
root as well. If at any point in this routine a ptr value represents a cluster larger than the variable big,
then it replaces that value. For each iteration in this function the largest cluster is output along with
the iteration index.

If we divide each of the iteration indexes by the size of the structure, N , then we have normalized the
maximum value to one, therefore each iteration value takes on the value of the associated percolation
probability at that point. When we plot the largest cluster size as a function of this probability we can
clearly see the point at which the system begins to percolate as a steep increase in the largest cluster size.
In Figures 4, 5, and 6 we can see that for the square, cubic, and triangular geometries the standardized
percolation threshold probabilities of 0.5927, 0.3116, and 1

2 respectively, were accurately confirmed by
these models.

4

Figure 4: Square Lattice 150 X 150 Largest Cluster Size

Figure 5: Cubic Lattice 150 X 150 X 150 Largest Cluster Size

5

Figure 6: Triangular Lattice L=150 Largest Cluster Size

The routine clustersizes placed between findroot and percolate required the use of two indexing variables.
At the beginning of the program another global integer, cs[N + 1], was defined to count the cluster sizes.
The reason for defining cs to be size N + 1 was because the index of cs represented the size of the cluster
in question, and clusters of size zero are not of interest. The values contained within cs represent the
number of clusters of that particular size inside of the lattice which are determined by examining the
contents of ptr at a particular probability (iteration) of percolate.

By running from index values of 0 to N and seeing if the ptr value of that associated index was negative,
we could determine if it was occupied or not, as well as the size of its cluster. If that site was indeed
occupied, the routine indexes cs with −ptr and adds 1 to that portion every time the condition is sat-
isfied, effectively counting the number of clusters that size. The function then prints all nonzero values
of cs as well as the associated index. Fig. 7 shows histograms of the distributions at probabilities of
.50, .55, .60 and .65, and perhaps more obvious trends are shown upon visual examination of the data
tables found in section 4.6. As we pass the percolation probability, the distribution of clusters decreases
as sites continue to join the largest cluster. Beneath the threshold probability a variety of independent
clusters of many different sizes exist.

6

Figure 7: Cluster Size Distribution

At the percolation threshold probability for the square lattice (Fig. 8), the largest cluster occupies 28.4%
of the structure. If we do not include clusters of size 1 in the total occupancy of the structure, the new
corresponding percolation probability of .5759, gives a difference of 0.0168 in the probability, or rather,
a 2.8% change in threshold probability.

7

Figure 8: Cluster Size Distribution at Critical Probability

For simplicities sake, when modifying the algorithm to examine compression constant values, percolate
was modified to once again fill ptr with values as determined by order, but then a local integer row gave
us the row index for that particular location determined by order. If the row was a vertical row, 1 was
added to that particular row location in krow. At this point ktot was called. ktot ran through all values
of krow and for those belonging to vertical bonds, determined the value of krow through float division
and added this value to a running total of the other nonzero rows. The result of this routine was one
over the total compression constant and therefore by printing one over that value, the total compression
constant of the system for a spring value, k = 1, was output for each probability. We can see that the
behavior that we predicted is indeed realized in this model. It was also determined that compression,
under the assumptions we had made about discontinuities in the structure, begins only at probabilities
greater than 0.01313 (See Figure 10). We can also examine that there is no significant correspondence
between the trend of ktot and the percolation threshold probability.

8

Figure 9: Compression Data

Figure 10: Initial Compression Threshold

9

3 Conclusion

With this project I was able to modify the Santa Fe algorithm for different geometries in 2 and 3 dimen-
sions, count distributions of cluster sizes at a variety of probabilities, and examine a total compression
constant trend for an equivalent percolating bond system of springs. However, there are still a variety
of values which would have been informational to examine, but in the interest of time, I was unable to.

The boundaries routine was modified in the compression model to allow the original version of percolate
to be implemented. boundaries was divided into two separate parts, one for the vertical bonds, and one
for the horizontal bonds. Each had their own set of boundary conditions, including terminal constraints
on the top and bottom of the lattice. Terminal constraints are achieved by a conditional statement
which sets the absent neighbors location to empty, so that in percolate these values will never be added
to a cluster. A graphical representation of this new boundaries function can be seen as Fig. 11. The
purpose of this would have been to once again count the largest cluster size, and with some more in
depth changes, allow us to isolate vertical springs belonging to that cluster. With this, a comparison
could be made regarding how much of the total compression belongs to the largest cluster at particular
probabilities.

Figure 11: Vertical and Horizontal Boundaries Geometry

Another modification that I would have liked to make would have been to implement a similar count-
ing routine as ktot to determine values of horizontal compression. This would allow us to test say, the
compression in 2 dimensions at a variety of probabilities under accelerations of the lattice at particular
angular orientations.

Finally, the last concepts I would have liked to examine would have been the resistor network problem.
Given modified routines of the original percolate and our new boundaries, by treating occupied bonds
as resistors, one could theoretically calculate a total network resistance at a variety of probabilities and
examine once again the contribution of the largest cluster to this value.

10

4 Appendix

4.1 Square Lattice Model

1 /* The following script was written by M.E. Newman and R.M. Ziff of the Santa Fe Institute for "A
Fast Monte Carlo Algorithm for Site or Bond Percolation" for a simple

2 square lattice */
3

4 #include <stdio.h>
5 #include <stdlib.h>
6

7 #define L 150 /* number of entries on side*/
8 #define N (L*L) /* Number of Sites available for occupacy /*
9 #define EMPTY -22501 /* Empty will be a negative number greater than dimension of lattice by 1 */

10

11

12 int ptr[N]; /*Array of pointers */
13 int nn[N][4]; /* To help us take a look at the neighbors */
14 int order[N]; /*This list will allow us to randomize the order that sites are filled */
15

16

17

18 /* The following defines boundaries condition which I intend to change pending this all runs
correctly and i understand it’s methodology fully */

19

20 void boundaries ()
21 {
22 int i;
23

24 for (i=0; i<N; i++) {
25 nn[i][0] = (i+1)%N; /*first portion of entry is neighbor the the right , mod (

dimension of lattice)*/
26 nn[i][1] = (i+N-1)%N; /* second portion of entry in nn is the neighbor to the left */
27 nn[i][2] = (i+L)%N; /* third portion of entry in nn is the neighbor below */
28 nn[i][3] = (i+N-L)%N; /* fourth portion of entry in nn is the neighbor above */
29

30 if (i%L == 0) nn[i][1] =i+L-1; /*maps left side to right side*/
31 if((i+1)%L == 0) nn[i][0] = i-L+1; /*Maps right side to left side */
32 }
33 }
34

35

36 /* We must generate a random order for which the sites will be occupied */
37 void permutation ()
38 {
39 int i, j; /* initializes our position locator */
40 int temp; /* temporary integer for storage */
41

42 for (i=0; i<N; i++) order[i]=i;
43 for (i=0; i<N; i++)
44 {
45 j=i+(N-i)*1.0* rand()/RAND_MAX; /* assigns value of j to a location a random number of steps

through the list from i */
46 temp=order[i]; /* holds value of original position of "i" value */
47 order[i]=order[j]; /* swaps value of order between original position "i" and new position "j

" */
48 order[j]=temp; /* then assign the order new location to the order of old location (

nessisary for occupational of all sites) */
49 }
50

51 }
52

53

54 /* We are going to need to have a method of finding the root of a cluster ...*/
55 /* a Recussive method is chosen to do this */
56

57

58 int findroot(int i)
59 {
60 if (ptr[i]<0) return i; /* negative values represent roots in this model */
61 return ptr[i]= findroot (ptr[i]);
62 }
63

64 /* */
65

66 void percolate ()
67 {
68 int i, j ;
69 int s1,s2;
70 int r1, r2;
71 int big =0;
72

73 for (i=0; i<N; i++) ptr[i]= -22501;
74 for (i=0; i<N; i++)
75 {

11

76 r1=s1=order[i]; /* r1 and s1 are defined to start at the position of 1st ordered location
*/

77 ptr[s1]= -1; /*fills the 1st chosen site (recall that values of roots are negative)*/
78 for (j=0; j<4; j++) {
79 s2= nn[s1][j]; /* Calls location of s2 to be the nearest neighbor or s1*/
80 if (ptr[s2] != -22501) {
81 r2=findroot(s2); /* Assuming that the value of site located at s2 is occupied ,

determine it’s root*/
82 if (r2 != r1)
83 {
84 if (ptr[r1]>ptr[r2]) {
85 ptr[r2] += ptr[r1]; /*If ptr r1 contains less elements than ptr r2,

then add the contents of ptr 1 to ptr 2 */
86 ptr[r1]=r2; /* ptr r1 then becomes value of its root , r2 */
87 r1= r2;
88 }
89 else {
90 ptr[r1] += ptr[r2]; /*But if ptr r1 contains more elements that ptr

2, the complete the opposite action */
91 ptr[r2]=r1;
92 }
93 if (-ptr[r1]>big) big = -ptr[r1]; /* This keeps track of the

largest clusters size by monitoring the contents of ptr
*/

94 }
95 }
96 }
97 printf("%6i %6i\n",i+1, big); /* which iteration is which and how large is the

biggest cluster */
98 }
99 }

100

101

102 /* To run the program now we must just initilize the following functions and end main */
103

104 int main ()
105 {
106

107 boundaries ();
108 permutation ();
109 percolate ();
110

111 }

4.2 Cubic Modifications to Nearest Neighbors

1

2 /* The following script was written by M.E. Newman and R.M. Ziff of the Santa Fe Institute for "A
Fast Monte Carlo Algorithm for Site or Bond Percolation */

3 /* Modified to 3-Dimensions by Victor Rice of Embry -Riddle Aeronautical University on 10/22/13 */
4

5

6 #include <stdio.h>
7 #include <stdlib.h>
8

9 #define L 150 /* number of entries on side*/
10 #define N (L*L*L) /* Number of Sites available for occupacy /*
11 #define EMPTY -3375001 /*Empty will be a negative number greater than dimension of lattice by 1 */
12

13

14 int ptr[N]; /*Array of pointers */
15 int nn[N][6]; /* To help us take a look at the neighbors */
16 int order[N]; /*This list will allow us to randomize the order that sites are filled */
17

18

19

20 /* The following defines boundaries condition which I intend to change pending this all runs
correctly and i understand it’s methodology fully */

21

22 void boundaries ()
23 {
24 int i;
25

26 for (i=0; i<N; i++) {
27 nn[i][0] = (i+1)%N; /*first portion of entry is neighbor the the right , mod (

dimension of lattice)*/
28 nn[i][1] = (i+N-1)%N; /* second portion of entry in nn is the neighbor to the left */
29 nn[i][2] = (i+L)%N; /* third portion of entry in nn is the neighbor below */
30 nn[i][3] = (i+N-L)%N; /* fourth portion of entry in nn is the neighbor above */
31 nn[i][4]= (i+L*L)%N ; /* Checks portion "behind" site */
32 nn[i][5]= (i-L*L)%N; /* Checks portion "in front" of site */
33

34 /*It is going to be nessisary to change this mapping conditions as well , must map front to back and
back to front */

35

12

36 if (i%L == 0) nn[i][1] =i+L-1; /*maps left side to right side*/
37 if((i+1)%L == 0) nn[i][0] = i-L+1; /*Maps right side to left side */
38 if((i+L*L) > N) nn[i][4]=i-(N-L*L); /* Maps back side to front side */
39 if((i-L*L) < 0) nn[i][5]=i+(N-L*L); /* Maps front side to back side */
40 }
41 }
42

43 .
44 .
45 .

4.3 Triangular Modificaitons to Nearest Neighbors

1 .
2 .
3 .
4

5

6 int ptr[N]; /*Array of pointers */
7 int nn[N][6]; /* To help us take a look at the neighbors */
8 int order[N]; /*This list will allow us to randomize the order that sites are filled */
9

10

11

12 /* The following defines boundaries condition which I intend to change pending this all runs
correctly and i understand it’s methodology fully */

13

14 void boundaries ()
15 {
16 int i;
17

18 for (i=0; i<N; i++) {
19 nn[i][0] = (i+1)%N; /*first portion of entry is neighbor the the right , mod (

dimension of lattice)*/
20 nn[i][1] = (i+N-1)%N; /* second portion of entry in nn is the neighbor to the left */
21 nn[i][2] = (i+L)%N; /* third portion of entry in nn is the neighbor below */
22 nn[i][3] = (i+N-L)%N; /* fourth portion of entry in nn is the neighbor above */
23 nn[i][4] = (i+N-L+1)%N; /*fifth portion of entry in nn is the right top diagonal */
24 nn[i][5] = (i+L-1)%N; /*sixth portion of entry in nn is the left bottom diagonal

*/
25 if (i%L == 0) nn[i][1] =i+L-1; /*maps left side to right side*/
26 if ((i+1)%L == 0) nn[i][0] = i-L+1; /*Maps right side to left side */
27 if (i%L == 0) nn[i][5]=(i+2*L-1)%N; /*maps bottom left corner to right side of row

below insure no out of bounds index */
28 if ((i+1)%L ==0) nn[i][4]=(i+N-2*L-1)%N; /*maps top right corner to left side of row

above , insures no negative index */
29 }
30 }
31

32

33

34

35 .
36 .
37 .

4.4 Square Routine with Cluster Sizes Algorithm

1 .
2 .
3 .
4

5 void clustersizes ()
6 { int m,i;
7

8 for (m=0; m<=N; m++) {
9 cs[m]=0; /* Clears memory */

10 }
11

12 for (i=0; i<N; i++){
13 if (ptr[i] < 0) {
14 if (ptr[i] != -22501) { /*if site is occupied */
15

16 cs[-ptr[i]]++; /*index of cs is size of the cluster which i
belongs to and places it at index of value of the same size */

17 }
18 }
19 }
20

21 /* Let’s output some values around this arena */
22 /* Only nonempty values concern us*/
23 for (i=1; i <=22500; i++){
24 if (cs[i] != 0){

13

25 printf("%6i %6i\n", i, cs[i]);
26 }
27 }
28 }
29

30 .
31 .
32 .

4.5 Simple Compression Routine

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 #define L 500 /* Pick a Dimension of the lattice , # of sites per edge of the square */
5 #define N (L*L) /* Total number of sites*/
6 #define empty (-(2*N-L) -1) /*1 outside of total number of available bonds to store empty ptr

values */
7

8 int order [2*N-L]; /*This vector used to percolate the system */
9 int ptr [2*N-L]; /*This will let us know if bonds are empty or occupied */

10 int nn[2*N-L][6]; /*The nearest neighbor vector for horizontal (index 1=1) and for the vertical (
index 1=2)*/

11 int krow [2*L-1]; /*How many occupied bonds in each row stored in this vecotr */
12

13 void boundaries ()
14 {
15 int i;
16 int n = 1;
17 for (i=0; i<2*N-L; i++) {
18

19 if (n%2 != 0){ /* if this index is odd it belongs to horizontal routine */
20

21 nn[i][0] = i-L; /*Top left neighbor */
22 nn[i][1] = i-L+1; /*Top right neighbor */
23 nn[i][2] = i+1; /* To the Right neighbor */
24 nn[i][3] = i+L+1; /* Bottom Right Neighbor */
25 nn[i][4] = i+L; /* Bottom left neighbor */
26 nn[i][5] = i-1; /*To the Left neighbor */
27

28 /* Continious Boundary Conditions only exist for horizontal entries , so we must void top and
bottom neighbors of the lattice */

29

30 if(i<=L-1) nn[i][0] = empty , nn[i][1] = empty;
31 if(i>=2*N-2*L) nn[i][3] = empty , nn[i][4] = empty;
32

33 /*Still have to map the horizontal pieces though ...*/
34

35 if((i+1)%L==0) nn[i][2]= i-L+1; /*Map right to left*/
36 if(i%L==0) nn[i][5] = i+L-1; /*Map left to right*/
37 }
38 else { /* here is where we will place the vertial routine */
39

40 nn[i][0] = i-2*L; /*Top center neighbor */
41 nn[i][1] = i-L; /*Top Right neighbor */
42 nn[i][2] = i+L; /* Bottom Right Neighbor */
43 nn[i][3] = i+2*L; /* Bottom Center Neighbor */
44 nn[i][4] =i+L-1; /* Bottom Left Neighbor */
45 nn[i][5] = i-L-1; /*Top Left neighbor */
46

47 /*Must void top and bottom for the vertical routine as well */
48

49 if(i<=2*L-1) nn[i][0] = empty;
50 if(i>=2*N-3*L) nn[i][3] = empty;
51

52 /*Still have to map the horizontal pieces though */
53

54 if(i%L==0) nn[i][4]=i+2*L-1 , nn[i][5]= i-1;
55 }
56

57 if(i==n*L) n++; /*When we finish running routine through a row , then change rows */
58 }
59

60 }
61

62 /* We must generate a random order for which the sites will be occupied (basically in order for us to
percolate the system) */

63

64

65 void permutation ()
66 {
67 int i, j; /* initializes our position locator */
68 int temp; /* temporary integer for storage */
69

70 for (i=0; i<2*N-L; i++) order[i]=i;

14

71 for (i=0; i<2*N-L; i++)
72 {
73 j=i+(2*N-L-i)*1.0* rand()/RAND_MAX;/* Assigns value of j to a location a random number

of steps through the list from i */
74 temp=order[i]; /* Holds value of original position of "i" value */
75 order[i]=order[j]; /* Swaps value of order between original position "i" and new

position "j" */
76 order[j]=temp; /* Then assign the order new location to the order of old location

*/
77

78 }
79 }
80

81

82 int findroot(int i)
83 {
84 if (ptr[i] < 0) return i;
85 return ptr[i]= findroot(ptr[i]);
86 }
87

88

89 float ktot ()
90 {
91

92 float tot = 0;
93 int n;
94

95 for(n=0;n<2*L-1;n++){
96 if(n%2!=0){ /*Only interested in the odd index rows*/
97 if (krow[n]==0) return 0; /*If there is a break in the lattice structure , then no

compression exists */
98 else {
99 tot=tot +1./ krow[n]; /*Keep a running total of 1/ ktotal for the structure */

100 }
101 }
102 }
103 return (1/tot); /* Return the total final spring constant value*/
104 }
105

106

107 void percolate ()
108 {
109 int j;
110 int k;
111 int i;
112 int row;
113

114 for (k=0; k<2*N-L; k++) ptr[k]= empty; /*All bonds begin as empty*/
115

116 for (i=0; i<2*N-L; i++) {
117 ptr[order[i]] = -1; /* Fills the bonds in a random order (recall that values

of roots are negative)*/
118 row = (order[i]+L)/L; /* Domain of [1:2*L-1]*/
119

120 if (row %2!=0) krow[row]++; /*It must belong to vertical if row is even*/
121 printf("%6f\n",ktot()); /*For each iteration of "i" find the total value of the

compression constant */
122 }
123 }
124

125

126 int main()
127 {
128 boundaries ();
129 ktot();
130 permutation ();
131 percolate ();
132 }

15

4.6 Data For Cluster Size Distributions
[H] Size at P=.50 Occurrence at P=.50 Size at P=.55 Occurrence at P=.55 Size at P=.60 Occurrence at P=.60 Size at P=.65 Occurrence at P=.65

1 734 1 518 1 356 1 219
2 169 2 107 2 73 2 32
3 115 3 64 3 29 3 13
4 70 4 46 4 26 4 11
5 50 5 28 5 19 5 8
6 32 6 20 6 10 6 2
7 32 7 22 7 3 7 1
8 17 8 12 8 6 8 1
9 25 9 6 9 5 9 2
10 27 10 9 10 5 10 1
11 14 11 13 11 8 11 2
12 14 12 6 12 1 13 1
13 7 13 5 13 4 16 1
14 11 14 7 14 3 17 2
15 12 15 7 15 2 20 1
16 14 16 3 16 1 23 1
17 8 17 4 17 1 24 1
18 12 18 5 18 2 32 1
19 7 19 6 19 4 69 1
20 3 20 5 21 2 13912 1
21 3 21 1 22 1
22 7 22 1 23 1
23 10 23 5 24 2
24 5 24 4 25 1
25 7 25 4 28 1
26 2 26 2 29 1
27 3 27 3 30 1
28 3 28 3 31 2
29 3 29 1 32 1
30 6 30 3 33 1
31 3 31 5 35 1
32 1 33 2 38 1
33 2 34 2 58 1
34 5 35 2 62 1
35 2 37 1 65 1
36 5 40 1 66 1
38 3 41 1 67 1
39 5 42 3 69 1
40 1 43 1 81 1
41 2 46 1 111 1
42 2 48 1 152 1
43 3 49 3 267 1
44 3 50 1 332 1
45 3 52 2 437 1
46 3 53 1 9906 1
47 1 54 1
48 1 60 1
49 2 61 1
50 1 62 1
51 1 63 2
52 1 64 1
53 1 66 1
54 1 69 1
55 5 72 2
59 1 76 1
62 1 82 1
67 1 84 1
69 1 87 2
70 1 88 1
74 2 89 1
85 2 95 1
88 1 98 1
89 1 106 1
90 2 108 1
95 1 124 1
97 1 127 1
108 1 131 1
140 1 133 1
152 1 134 1
161 1 141 1
162 1 149 1
164 1 160 1
166 1 179 1
170 1 188 1
205 1 226 1
208 1 237 2
297 1 284 1

317 1
358 1
387 1
530 1
550 1
756 1
873 1

16

5 Citations

(1) Meeser, Ronald ; Roy, Rahual Continuum Percolation Cambridge University Press, 1996

(2) Sahimi,Muhammad Applications of Percolation Theory, Taylor and Francis, 1994

(3) Staugger, Dietrich ; Aharony, Amnon Introduction to Percolation Theory Taylor and Francis,
1994

(4) Wang, J; Z. Zhou; W. Zhang; T. Garoni; Y. Deng (2013). Bond and site percolation in three
dimensions. arXiv:1302.0421. Bibcode:2013PhRvE..87e2107W. doi:10.1103/PhysRevE.87.052107.

(5) Sykes, M. F.; J. W. Essam (1964). ”Exact critical percolation probabilities for site and bond
problems in two dimensions”. Journal of Mathematical Physics 5 (8): 1117–1127. Bibcode:1964JMP.....5.1117S.
doi:10.1063/1.1704215.

(6) Brown, Daniel; Elliot, Matthew ; Et. Al. ”phase transitions of computational power in the
resource states for one-way quantum computation”. http://iopscience.iop.org/1367-2630/10/2/023010/fulltext/
12 February 2008

(7) Newman, M.E.J. ; Ziff, R.M. ”A Fast Monte Carlo Algorithm for Site or Bond Percolation”
http://www.santafe.edu/media/workingpapers/01-02-010.pdf Santa Fe Institute, 2001

17

