Problem 1

Bui Quang Tu

July 8, 2014

Problem

Let θ, β be 3×3 skew-symmetric matrices and σ be a 3×3 matrix. Find symmetric S, T such that:

$$
(S-\theta)(T-\beta)=\sigma
$$

Solution
Assuming nonsingularity whenever necessary
From $(S-\theta)(T-\beta)=\sigma$ we have $S=\theta+\sigma(T-\beta)^{-1}$
S is hermitian if and only if

$$
S=\theta+\sigma(T-\beta)^{-1}=\theta^{\dagger}+\left((T-\beta)^{-1}\right)^{\dagger} \sigma^{\dagger}
$$

or equivalently:

$$
\begin{gathered}
2 \theta=(T+\beta)^{-1} \sigma^{\dagger}-\sigma(T-\beta)^{-1} \\
2(T+\beta) \theta(T-\beta)=\sigma^{\dagger}(T-\beta)-(T+\beta) \sigma \\
2 T \theta T+\left(2 \beta \theta-\sigma^{\dagger}\right) T+T(\sigma-2 \theta \beta)-2 \beta \theta \beta+\sigma^{\dagger} \beta+\beta \sigma=0
\end{gathered}
$$

We denote $R=2 \theta ; A=(2 \theta \beta-\sigma) ; Q=-2 \beta \theta \beta+\sigma^{\dagger} \beta+\beta \sigma$
then $A^{\dagger}=\left(2 \beta \theta-\sigma^{\dagger}\right)$
The equation becomes

$$
T R T+A^{\dagger} T-T A+Q=0
$$

with given A and skew-hermitian R, Q.
To find 1 solution we assume that T is diagonal.
Denote $\mathrm{R}=\left(\begin{array}{ccc}0 & c & b \\ -c & 0 & a \\ -b & -a & 0\end{array}\right), \mathrm{A}=\left(\begin{array}{ccc}m_{1} & m_{2} & m_{3} \\ m_{4} & m_{5} & m_{6} \\ m_{7} & m_{8} & m_{9}\end{array}\right), \mathrm{Q}=\left(\begin{array}{ccc}0 & q_{1} & q_{2} \\ -q_{1} & 0 & q_{3} \\ -q_{2} & -q_{3} & 0\end{array}\right)$,
$\mathrm{T}=\left(\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right)$
Then we have $T R T=\left(\begin{array}{ccc}0 & c x y & b x z \\ -c x y & 0 & a y z \\ -b x z & -a y z & 0\end{array}\right), A^{\dagger} X=\left(\begin{array}{ccc}0 & m_{4} y & m_{7} z \\ m_{2} x & 0 & m_{8} z \\ m_{3} x & m_{6} y & 0\end{array}\right)$
Then we have the explicit form of the equation:

$$
\begin{aligned}
& c x y+m_{4} y-m_{2} x=q_{1}(1) \\
& b x z+m_{7} z-m_{3} x=q_{2}(2)
\end{aligned}
$$

$$
a y z+m_{8} z-m_{6} y=q_{3}(3)
$$

This system of equations is solved by eliminate z (by (2) and (3)) then calculate y from x (by the identity of $x y$). Then we are left with a quadratic equation of x.

Have x we can solve y, z.
The explicit solution is obtainable but not worth calculated by hand.

